Miroslav Cieslar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3736858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-wall carbon nanotubes coated with polyaniline. Polymer, 2006, 47, 5715-5723.	3.8	286
2	Polyaniline nanotubes: conditions of formation. Polymer International, 2006, 55, 31-39.	3.1	270
3	Thermal stability of ultrafine grained copper. Physical Review B, 2002, 65, .	3.2	106
4	Hydrogen-induced defects in bulk niobium. Physical Review B, 2004, 69, .	3.2	77
5	Ultrafine-grained structure development and deformation behavior of aluminium processed by constrained groove pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 126-129.	5.6	74
6	Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. Synthetic Metals, 2016, 214, 14-22.	3.9	58
7	Polypyrrole–silver composites prepared by the reduction of silver ions with polypyrrole nanotubes. Polymer Chemistry, 2013, 4, 3610.	3.9	53
8	In-situ study of phase transformations during homogenization of 6005 and 6082 Al alloys. Journal of Alloys and Compounds, 2017, 725, 504-509.	5.5	37
9	Superplasticity in an Al–Mg–Zr–Sc alloy produced by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 91-94.	5.6	34
10	3D analysis of macrosegregation in twin-roll cast AA3003 alloy. Materials Characterization, 2016, 118, 44-49.	4.4	33
11	Precision of electrical resistivity measurements. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 339-342.	5.6	32
12	The influence of ECAP temperature on the stability of Al–Zn–Mg–Cu alloy. Journal of Alloys and Compounds, 2004, 378, 237-241.	5.5	31
13	Assessment of the Al Corner of the Ternary Al–Fe–Si System. Materials Science Forum, 0, 649, 523-528.	0.3	31
14	Magnetron Sputtering of Polymeric Targets: From Thin Films to Heterogeneous Metal/Plasma Polymer Nanoparticles. Materials, 2019, 12, 2366.	2.9	29
15	High-temperature mechanical properties of Zr alloyed Fe3Al-type iron aluminide. Intermetallics, 2007, 15, 333-337.	3.9	28
16	Electronic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>α</mml:mi><mml:mtext>â^²by Zr. Physical Review B, 2015, 91, .</mml:mtext></mml:mrow></mml:math 	ll:natæxt><	m ø% :msub><
17	Hydrogen-induced defects in niobium. Journal of Alloys and Compounds, 2007, 446-447, 479-483.	5.5	21

Phase transformations in novel hot-deformed Al–Zn–Mg–Cu–Si–Mn–Fe(–Sc–Zr) alloys. Materials and Design, 2020, 193, 108821.
21

#	Article	IF	CITATIONS
19	Carbide formation in Zr-containing Fe3Al-based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 289-293.	5.6	19
20	Positron annihilation study of vacancies in Fe–Al based alloys. Intermetallics, 2010, 18, 592-598.	3.9	19
21	Structure development during superplastic deformation of an Al-Mg-Sc-Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 95-99.	5.6	18
22	UH3-based ferromagnets: New look at an old material. Journal of Magnetism and Magnetic Materials, 2016, 400, 130-136.	2.3	18
23	Portevin–Le Chatelier effect in biaxially strained Al–Fe–Si foils. Scripta Materialia, 2003, 48, 1105-1110.	5.2	17
24	Spatial distribution of defects in ultra-fine grained copper prepared by high-pressure torsion. Physica Status Solidi A, 2003, 195, 335-349.	1.7	16
25	Acoustic emission of salt-replicated foams during compression. Scripta Materialia, 2008, 59, 987-990.	5.2	16
26	The Influence of Alloy Composition on Phase Transformations and Recrystallization in Twin-Roll Cast Al-Mn-Fe Alloys. Materials Science Forum, 2006, 519-521, 365-370.	0.3	15
27	Annealing Effects in Cast Commercial Aluminium Al–Mg–Zn–Cu(–Sc–Zr) Alloys. Metals and Materials International, 2021, 27, 995-1004.	3.4	15
28	Influence of annealing on mechanical properties of an Fe–28Al–4Cr–0.1Ce alloy. Intermetallics, 1999, 7, 847-853.	3.9	14
29	The influence of Cr and Ce additions on the mechanical properties of Fe3Al based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 324, 23-27.	5.6	14
30	The influence of dispersoids on the recrystallization of aluminium alloys. International Journal of Materials Research, 2009, 100, 391-394.	0.3	14
31	Core@shell Cu/hydrocarbon plasma polymer nanoparticles prepared by gas aggregation cluster source followed by inâ€flight plasma polymer coating. Plasma Processes and Polymers, 2018, 15, 1700109.	3.0	14
32	In-flight modification of Ni nanoparticles by tubular magnetron sputtering. Journal Physics D: Applied Physics, 2019, 52, 205302.	2.8	14
33	The influence of processing route on the plastic deformation of Al–Zn–Mg–Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 324, 90-95.	5.6	13
34	Electrical resistivity of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>5</mml:mn><mml:mi>f</mml:mi> -electron systems affected by static and dynamic spin disorder. Physical Review B, 2017, 95, .</mml:math 	3.2	13
35	TEM Investigation of Precipitation in Al-Mn Alloys with Addition of Zr. Manufacturing Technology, 2012, 12, 212-217.	1.4	13
36	Multilayer composite al99.99/almg3 sheets prepared by accumulative roll bonding. International Journal of Materials Research, 2009, 100, 858-862.	0.3	12

#	Article	IF	CITATIONS
37	Multi-wall carbon nanotubes with nitrogen-containing carbon coating. Chemical Papers, 2013, 67, .	2.2	12
38	Composite Ni@Ti nanoparticles produced in arrow-shaped gas aggregation source. Journal Physics D: Applied Physics, 2020, 53, 195303.	2.8	11
39	Role of Small Addition of Sc and Zr in Clustering and Precipitation Phenomena Induced in AA7075. Metals, 2021, 11, 8.	2.3	11
40	Investigation of spatial distribution of defects in ultra-fine grained copper. Applied Surface Science, 2002, 194, 140-144.	6.1	10
41	Hydrogen-induced defects in niobium studied by positron annihilation spectroscopy. Journal of Alloys and Compounds, 2005, 404-406, 580-583.	5.5	10
42	The influence of ECAP on microstructure evolution of aluminium alloys during in-situ heating in TEM. International Journal of Materials Research, 2015, 106, 676-681.	0.3	9
43	Strong 5f Ferromagnetism in UH3-Based Materials. MRS Advances, 2016, 1, 2987-2992.	0.9	9
44	New Twin-Roll Cast Al-Li Based Alloys for High-Strength Applications. Metals, 2020, 10, 987.	2.3	9
45	Precipitation in the Fe–28Al–4Cr intermetallic alloy with Ce addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 324, 5-10.	5.6	8
46	Accumulative Roll Bonding of AA8006, AA8011 and AA5754 Sheets. Materials Science Forum, 2006, 519-521, 1227-1232.	0.3	8
47	Annealing Effects in Twin-Roll Cast AA8006 Aluminium Sheets Processed by Accumulative Roll-Bonding. Materials, 2014, 7, 8058-8069.	2.9	8
48	The study of microstructure and mechanical properties of twin-roll cast AZ31 magnesium alloy after constrained groove pressing. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012078.	0.6	8
49	Annealing effects in commercial aluminium hot-rolled 7075(–Sc–Zr) alloys. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1613-1623.	3.6	8
50	Thermal Stability of Ultra Fine Grained Copper Prepared by High Pressure Torsion Using Various Pressures. Journal of Metastable and Nanocrystalline Materials, 2003, 17, 37-44.	0.1	7
51	High Strain Rate Superplasticity in a Zr and Sc Modified 7075 Aluminum Alloy Produced by ECAP. Materials Science Forum, 2008, 584-586, 164-169.	0.3	7
52	Microstructure and high temperature deformation of an ultra-fine grained ECAP AA7075 aluminium alloy. International Journal of Materials Research, 2013, 104, 3-10.	0.3	7
53	Effect of pre-annealing on microstructure evolution of TRC AA3003 aluminum alloy subjected to ECAP. Transactions of Nonferrous Metals Society of China, 2016, 26, 627-633.	4.2	7
54	In-flight plasma modification of nanoparticles produced by means of gas aggregation sources as an effective route for the synthesis of core-satellite Ag/plasma polymer nanoparticles. Plasma Physics and Controlled Fusion, 2020, 62, 014005.	2.1	7

#	Article	IF	CITATIONS
55	Grain Refinement in Al-Mn-Fe-Si Alloys by Severe Plastic Deformation. Manufacturing Technology, 2015, 15, 679-684.	1.4	7
56	Effect of Thermomechical Pretreatment on Mechanical Properties of Modified Al-Mn-Fe-Si Based Alloys. Materials Science Forum, 2008, 567-568, 325-328.	0.3	6
57	The optimization of ECAP conditions to achieve high strain-rate superplasticity in a Zr- and Sc-modified aa 7075 aluminum alloy. International Journal of Materials Research, 2009, 100, 851-857.	0.3	6
58	Study of twin-roll cast Aluminium alloys subjected to severe plastic deformation by equal channel angular pressing. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012086.	0.6	6
59	Plasmaâ€based synthesis of iron carbide nanoparticles. Plasma Processes and Polymers, 2020, 17, 2000105.	3.0	6
60	The Study of the Behavior of Constrained Groove Pressed Magnesium Alloy after Heat Treatment. Acta Physica Polonica A, 2015, 128, 775-779.	0.5	6
61	Effect of low temperature stabilisation on the precipitation of a continuously cast Al–Mg–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 375-379.	5.6	5
62	Microstructure and Properties of Aluminium Processed by Constrained Groove Pressing. Materials Science Forum, 0, 584-586, 535-540.	0.3	5
63	High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing. Materials, 2015, 8, 7650-7662.	2.9	5
64	Deformation Instabilities in Al-Li Based Alloys. Materials Science Forum, 1996, 217-222, 1049-1054.	0.3	4
65	Plastic Instabilities during Biaxial Testing of Al-Fe-Si Foils. Materials Science Forum, 2002, 396-402, 1079-1084.	0.3	4
66	Plasticity of thin Al films as a function of temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 734-737.	5.6	4
67	Effect of Quenching Temperature on Age Hardening of AA6016 Sheets. Materials Science Forum, 2008, 567-568, 333-336.	0.3	4
68	Influence of ceramic nanoparticles on grain growth in ultra fine grained copper prepared by high pressure torsion. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 3587-3590.	0.8	4
69	Thermal Stability of Ultrafine Grains in Al-Fe-Mn-Si Foils Prepared by ARB and Subsequent Rolling. Materials Science Forum, 0, 584-586, 905-910.	0.3	4
70	Deformation behaviour of ultrafine-grained 7075 aluminium alloy. International Journal of Materials Research, 2009, 100, 847-850.	0.3	4
71	Iron in spleen tissues. , 2012, , .		4
72	Bow–tie slip traces in Fe80Al20 single crystals deformed at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 258-261.	5.6	4

#	Article	IF	CITATIONS
73	Spectral Dependence of the Photoplastic Effect in CdZnTe and CdZnTeSe. Materials, 2021, 14, 1465.	2.9	4
74	Microstructure of Twin-roll Cast Al-Mg-Sc-Zr Alloy. Manufacturing Technology, 2016, 16, 1255-1259.	1.4	4
75	Microstructure Evolution of Al-Mn-Si-Fe Alloy Studied by In-situ Transmission Electron Microscopy. Manufacturing Technology, 2014, 14, 412-417.	1.4	4
76	Deformation mechanisms of Al thin films: In-situ TEM and molecular dynamics study. Scripta Materialia, 2022, 215, 114688.	5.2	4
77	Positron Annihilation Studies of Microstructure of Ultra Fine Grained Metals Prepared by Severe Plastic Deformation. Materials Science Forum, 2005, 482, 207-210.	0.3	3
78	Microstructure, Texture and Property Changes of High Purity Aluminium during Accumulative Roll Bonding and Conventional Rolling. Materials Science Forum, 2006, 503-504, 711-716.	0.3	3
79	Quenchedâ€in vacancies in Feâ€Al alloys. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2367-2369.	0.8	3
80	Quantitative numerical method for analysing slip traces observed by AFM. Surface Topography: Metrology and Properties, 2013, 1, 015002.	1.6	3
81	Structure Development and Deformation Behaviour of Pure Aluminium Processed by Constrained Groove Pressing. Materials Science Forum, 0, 794-796, 882-887.	0.3	3
82	Microstructure and deformation behaviour of the ECAP Al-Mn-Sc-Zr alloy. Metallic Materials, 2021, 52, 329-335.	0.3	3
83	Synthesis and microstructure investigation of heterogeneous metalâ€plasma polymer Ag/HMDSO nanoparticles. Surface and Interface Analysis, 2020, 52, 1023-1028.	1.8	3
84	The Evolution of Microstructure and Mechanical Properties of Al-Mn-Fe-Si Alloys During Isothermal Annealing. Acta Physica Polonica A, 2015, 128, 746-750.	0.5	3
85	The Influence of Casting Methods on Microstructure of Al-Mg-Sc-Zr Alloy. Manufacturing Technology, 2018, 18, 130-134.	1.4	3
86	Highly Efficient and Controllable Methodology of the Cd0.25Zn0.75Se/ZnS Core/Shell Quantum Dots Synthesis. Nanomaterials, 2021, 11, 2616.	4.1	3
87	The Effects of Nature-Inspired Synthesis on Silver Nanoparticle Generation. ACS Omega, 2022, 7, 4850-4858.	3.5	3
88	Core@shell nanoparticles by inflight controlled coating. Journal Physics D: Applied Physics, 2022, 55, 215201.	2.8	3
89	Differences in Structure Evolution of Twin-Roll Cast AA8006 and AA8011 Alloys during Annealing. Materials Science Forum, 2000, 331-337, 829-834.	0.3	2
90	Bulge Test Characterization of Static Softening and Dynamic Instabilities in Foils of an Al-Based Alloy. Materials Research Society Symposia Proceedings, 2001, 695, 1.	0.1	2

#	Article	IF	CITATIONS
91	Hydrogen-Induced Defects in Niobium Studied by Positron Annihilation. Materials Science Forum, 2004, 445-446, 60-62.	0.3	2
92	The influence of temperature on plastic deformation of free standing thin Al–Zn–Mg–Cu films. Journal of Alloys and Compounds, 2004, 378, 312-315.	5.5	2
93	Accumulative Roll-Bonding (ARB) of Sheets of Aluminium and its Commercial Alloys AA8006 and AA5754 at Ambient and Elevated Temperatures. Materials Science Forum, 2007, 546-549, 767-774.	0.3	2
94	Properties and microstructure of twin-roll cast Al-Mg alloy containing Sc and Zr. IOP Conference Series: Materials Science and Engineering, 2017, 179, 012012.	0.6	2
95	Effect of annealing on microstructure and properties of twin-roll-cast Al–Mn alloys with different copper content. International Journal of Materials Research, 2009, 100, 428-432.	0.3	2
96	Heat Treatment of Cast and Cold Rolled Al–Yb and Al–Mn–Yb–Zr Alloys. Materials, 2021, 14, 7122.	2.9	2
97	Jerky Flow in Al-Li-Mg-Cu Alloy. Key Engineering Materials, 1995, 97-98, 257-262.	0.4	1
98	Inhomogeneity of Mechanical and Electrical Properties of Al-Li-Based Alloys Extrusions. Materials Science Forum, 1996, 217-222, 987-992.	0.3	1
99	Positron Annihilation Spectroscopy, Electrical Resistivity, and Microstructural Transmission Electron Microscopy Studies of the Cu-Mn System. Materials Science Forum, 1997, 255-257, 572-574.	0.3	1
100	Annealing Response of Al-0.22Sc-0.13Zr Alloy Processed by Accumulative Roll Bonding. Materials Science Forum, 0, 584-586, 899-904.	0.3	1
101	Quenched-in vacancies in Fe ₃ Al based alloys: a positron annihilation study. Journal of Physics: Conference Series, 2011, 265, 012016.	0.4	1
102	Effect of Processing Conditions on the Microstructure Development during Constrained Groove Pressing of Aluminium. Materials Science Forum, 0, 783-786, 331-337.	0.3	1
103	Anomalous X-ray diffraction from ω nanoparticles in β-Ti(Mo) single crystals. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, 718-729.	0.1	1
104	ALCHEMI study of chromium doped iron-aluminides. International Journal of Materials Research, 2009, 100, 811-813.	0.3	1
105	High Temperature Annealing of Twin-Roll Cast Al-Li-Based Alloy Studied by <i>In-situ</i> SEM and STEM. Microscopy and Microanalysis, 2021, 27, 79-80.	0.4	1
106	Kirkendall Effect in Twin-Roll Cast AA 3003 Aluminum Alloy. Crystals, 2022, 12, 607.	2.2	1
107	Mechanical Inhomogeneity of Extruded Al-Li Based Profiles. Materials Science Forum, 2002, 396-402, 1241-1246.	0.3	0
108	Lateral and Depth Distribution of Defects in Ultra-Fine Grained Copper Prepared by High-Pressure Torsion. Journal of Metastable and Nanocrystalline Materials, 2003, 17, 23-28.	0.1	0

#	Article	IF	CITATIONS
109	Preparation of ultrafine-grained twin-roll cast AlMg3 sheets by accumulative roll bonding. International Journal of Materials Research, 2009, 100, 863-866.	0.3	0
110	High-Temperature Processes Occurring during Homogenization of AA6082 Aluminum Alloy. , 2014, , 237-241.		0
111	The Influence of Foils Thickness on Recrystallized Structure Observed duringIn-SituHeating of AlMgScZr Alloy. Microscopy and Microanalysis, 2019, 25, 65-66.	0.4	0
112	Recrystallization in Multilayer Al99.99/AlMg3 Laminates Prepared by Accumulative Roll-Bonding. Acta Physica Polonica A, 2015, 128, 487-491.	0.5	0
113	Fe-rich precipitates in twin-roll cast 8006 aluminum alloy and their evolution during high temperature annealing. , 2019, , .		0
114	Measurements of effective elastic modulus in wound rolls of thin aluminum foil. , 2020, , .		0
115	Aluminum-steel clad material prepared by twin-roll casting. , 2020, , .		0
116	THERMAL CHARACTERISTICS AND ELECTRICAL PROPERTIES OF HOT DEFORMED AA7075 ALLOYS WITH AND WITHOUT Sc, Zr ADDITIONS. , 2020, , .		0
117	Tensile Deformation of Al Thin Films Studied by In-situ TEM and Molecular Dynamics Simulations. Microscopy and Microanalysis, 2021, 27, 71-72.	0.4	0
118	Mechanical and electrical properties of cast Al–Er–Zr alloy. , 2021, , .		0