Irina Isakova-Sivak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3736746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The development of vaccine viruses against pandemic A(H1N1) influenza. Vaccine, 2011, 29, 1836-1843.	3.8	100
2	Genetic bases of the temperature-sensitive phenotype of a master donor virus used in live attenuated influenza vaccines: A/Leningrad/134/17/57 (H2N2). Virology, 2011, 412, 297-305.	2.4	90
3	M2e-based universal influenza vaccines: a historical overview and new approaches to development. Journal of Biomedical Science, 2019, 26, 76.	7.0	82
4	Assessment of Human Immune Responses to H7 Avian Influenza Virus of Pandemic Potential: Results from a Placebo–Controlled, Randomized Double–Blind Phase I Study of Live Attenuated H7N3 Influenza Vaccine. PLoS ONE, 2014, 9, e87962.	2.5	56
5	Basics of CD8 T-cell immune responses after influenza infection and vaccination with inactivated or live attenuated influenza vaccine. Expert Review of Vaccines, 2018, 17, 977-987.	4.4	46
6	Development and approval of live attenuated influenza vaccines based on Russian master donor viruses: Process challenges and success stories. Vaccine, 2016, 34, 5436-5441.	3.8	42
7	Comparative Immunogenicity and Cross-Clade Protective Efficacy of Mammalian Cell-Grown Inactivated and Live Attenuated H5N1 Reassortant Vaccines in Ferrets. Journal of Infectious Diseases, 2011, 204, 1491-1499.	4.0	41
8	H7N9 live attenuated influenza vaccine in healthy adults: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infectious Diseases, The, 2016, 16, 303-310.	9.1	35
9	H7N3 live attenuated influenza vaccine has a potential to protect against new H7N9 avian influenza virus. Vaccine, 2013, 31, 4702-4705.	3.8	31
10	Broadly protective anti-hemagglutinin stalk antibodies induced by live attenuated influenza vaccine expressing chimeric hemagglutinin. Virology, 2018, 518, 313-323.	2.4	31
11	Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Review of Vaccines, 2015, 14, 1313-1329.	4.4	30
12	H7N9 Live Attenuated Influenza Vaccine Is Highly Immunogenic, Prevents Virus Replication, and Protects Against Severe Bronchopneumonia in Ferrets. Molecular Therapy, 2016, 24, 991-1002.	8.2	27
13	Pandemic preparedness with live attenuated influenza vaccines based on A/Leningrad/134/17/57 master donor virus. Expert Review of Vaccines, 2015, 14, 395-412.	4.4	26
14	Development and Pre-Clinical Evaluation of Two LAIV Strains against Potentially Pandemic H2N2 Influenza Virus. PLoS ONE, 2014, 9, e102339.	2.5	25
15	Clinical testing of pre-pandemic live attenuated A/H5N2 influenza candidate vaccine in adult volunteers: Results from a placebo-controlled, randomized double-blind phase I study. Vaccine, 2015, 33, 5110-5117.	3.8	23
16	Sequential Immunization with Universal Live Attenuated Influenza Vaccine Candidates Protects Ferrets against a High-Dose Heterologous Virus Challenge. Vaccines, 2019, 7, 61.	4.4	23
17	Assessment of immune responses to H5N1 inactivated influenza vaccine among individuals previously primed with H5N2 live attenuated influenza vaccine. Human Vaccines and Immunotherapeutics, 2015, 11, 2839-2848.	3.3	22
18	Comparative studies of infectivity, immunogenicity and cross-protective efficacy of live attenuated influenza vaccines containing nucleoprotein from cold-adapted or wild-type influenza virus in a mouse model. Virology, 2017, 500, 209-217.	2.4	22

IRINA ISAKOVA-SIVAK

#	Article	IF	CITATIONS
19	H2N2 live attenuated influenza vaccine is safe and immunogenic for healthy adult volunteers. Human Vaccines and Immunotherapeutics, 2015, 11, 970-982.	3.3	21
20	Recombinant live attenuated influenza vaccine viruses carrying CD8 T-cell epitopes of respiratory syncytial virus protect mice against both pathogens without inflammatory disease. Antiviral Research, 2019, 168, 9-17.	4.1	20
21	Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses, 2022, 14, 1082.	3.3	20
22	Cross-protection against H7N9 influenza strains using a live-attenuated H7N3 virus vaccine. Vaccine, 2015, 33, 108-116.	3.8	19
23	Immunogenicity and Cross Protection in Mice Afforded by Pandemic H1N1 Live Attenuated Influenza Vaccine Containing Wild-Type Nucleoprotein. BioMed Research International, 2017, 2017, 1-11.	1.9	19
24	Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Review of Vaccines, 2021, 20, 1097-1112.	4.4	19
25	Cold-adapted influenza viruses as a promising platform for viral-vector vaccines. Expert Review of Vaccines, 2016, 15, 1241-1243.	4.4	18
26	Immunogenicity and Viral Shedding of Russian-Backbone, Seasonal, Trivalent, Live, Attenuated Influenza Vaccine in a Phase II, Randomized, Placebo-Controlled Trial Among Preschool-Aged Children in Urban Bangladesh. Clinical Infectious Diseases, 2019, 69, 777-785.	5.8	18
27	Conserved T-cell epitopes of respiratory syncytial virus (RSV) delivered by recombinant live attenuated influenza vaccine viruses efficiently induce RSV-specific lung-localized memory T cells and augment influenza-specific resident memory T-cell responses. Antiviral Research, 2020, 182, 104864.	4.1	18
28	Detection of IFNÎ ³ -Secreting CD4+ and CD8+ Memory T Cells in COVID-19 Convalescents after Stimulation of Peripheral Blood Mononuclear Cells with Live SARS-CoV-2. Viruses, 2021, 13, 1490.	3.3	18
29	Live attenuated influenza vaccine viral vector induces functional cytotoxic T-cell immune response against foreign CD8+ T-cell epitopes inserted into NA and NS1 genes using the 2A self-cleavage site. Human Vaccines and Immunotherapeutics, 2018, 14, 2964-2970.	3.3	17
30	H7N9: can H7N3 live-attenuated influenza vaccine be used at the early stage of the pandemic?. Expert Review of Vaccines, 2014, 13, 1-4.	4.4	16
31	Broad cross protection by recombinant live attenuated influenza H3N2 seasonal virus expressing conserved M2 extracellular domain in a chimeric hemagglutinin. Scientific Reports, 2021, 11, 4151.	3.3	16
32	A promising inactivated whole-virion SARS-CoV-2 vaccine. Lancet Infectious Diseases, The, 2021, 21, 2-3.	9.1	15
33	Reassortant viruses for influenza vaccines: is it time to reconsider their genome structures?. Expert Review of Vaccines, 2016, 15, 565-567.	4.4	14
34	Overview of human rhinovirus immunogenic epitopes for rational vaccine design. Expert Review of Vaccines, 2019, 18, 877-880.	4.4	14
35	Characterization of Reverse Genetics-Derived Cold-Adapted Master Donor Virus A/Leningrad/134/17/57 (H2N2) and Reassortants with H5N1 Surface Genes in a Mouse Model. Vaccine Journal, 2014, 21, 722-731.	3.1	12
36	Tackling a novel lethal virus: a focus on H7N9 vaccine development. Expert Review of Vaccines, 2017, 16, 709-721.	4.4	12

IRINA ISAKOVA-SIVAK

#	Article	IF	CITATIONS
37	Insights into current clinical research on the immunogenicity of live attenuated influenza vaccines. Expert Review of Vaccines, 2020, 19, 43-55.	4.4	11
38	Construction and Immunogenicity of a Novel Multivalent Vaccine Prototype Based on Conserved Influenza Virus Antigens. Vaccines, 2020, 8, 197.	4.4	11
39	Recombinant Live Attenuated Influenza Vaccine Viruses Carrying Conserved T Cell Epitopes of Human Adenoviruses Induce Functional Cytotoxic T Cell Responses and Protect Mice against both Infections. Vaccines, 2020, 8, 196.	4.4	10
40	Generation and Characterization of Universal Live-Attenuated Influenza Vaccine Candidates Containing Multiple M2e Epitopes. Vaccines, 2020, 8, 648.	4.4	9
41	Universal Live-Attenuated Influenza Vaccine Candidates Expressing Multiple M2e Epitopes Protect Ferrets against a High-Dose Heterologous Virus Challenge. Viruses, 2021, 13, 1280.	3.3	9
42	Genotyping assay for differentiation of wild-type and vaccine viruses in subjects immunized with live attenuated influenza vaccine. PLoS ONE, 2017, 12, e0180497.	2.5	9
43	Live Attenuated Influenza Vaccines engineered to express the nucleoprotein of a recent isolate stimulate human influenza CD8 ⁺ T cells more relevant to current infections. Human Vaccines and Immunotherapeutics, 2018, 14, 941-946.	3.3	8
44	A Strategy to Elicit M2e-Specific Antibodies Using a Recombinant H7N9 Live Attenuated Influenza Vaccine Expressing Multiple M2e Tandem Repeats. Biomedicines, 2021, 9, 133.	3.2	8
45	Development of a Novel Live Attenuated Influenza A Virus Vaccine Encoding the IgA-Inducing Protein. Vaccines, 2021, 9, 703.	4.4	8
46	Ferristatin II Efficiently Inhibits SARS-CoV-2 Replication in Vero Cells. Viruses, 2022, 14, 317.	3.3	8
47	Safety, Immunogenicity, and Protective Efficacy of a Chimeric A/B Live Attenuated Influenza Vaccine in a Mouse Model. Microorganisms, 2021, 9, 259.	3.6	7
48	Live Attenuated Influenza Vaccines against Highly Pathogenic H5N1avian Influenza: Development and Preclinical Characterization. Journal of Vaccines & Vaccination, 2013, 04, .	0.3	7
49	A Live Probiotic Vaccine Prototype Based on Conserved Influenza a Virus Antigens Protect Mice against Lethal Influenza Virus Infection. Biomedicines, 2021, 9, 1515.	3.2	7
50	Development of a T Cell-Based COVID-19 Vaccine Using a Live Attenuated Influenza Vaccine Viral Vector. Vaccines, 2022, 10, 1142.	4.4	7
51	Two Live Attenuated Vaccines against Recent Low–and Highly Pathogenic H7N9 Influenza Viruses Are Safe and Immunogenic in Ferrets. Vaccines, 2018, 6, 74.	4.4	6
52	Genetic stability of live attenuated vaccines against potentially pandemic influenza viruses. Vaccine, 2015, 33, 7008-7014.	3.8	5
53	Use of live attenuated influenza vaccines in young children in resource-poor settings. The Lancet Global Health, 2016, 4, e879-e880.	6.3	5
54	Prospects of and Barriers to the Development of Epitope-Based Vaccines against Human Metapneumovirus. Pathogens, 2020, 9, 481.	2.8	5

IRINA ISAKOVA-SIVAK

#	Article	IF	CITATIONS
55	Contribution of Neuraminidase of Influenza Viruses to the Sensitivity to Sera Inhibitors and Reassortment Efficiency. Open Microbiology Journal, 2014, 8, 59-70.	0.7	5
56	Analysis of Immune Epitopes of Respiratory Syncytial Virus for Designing of Vectored Vaccines Based on Influenza Virus Platform. Bulletin of Experimental Biology and Medicine, 2016, 161, 533-537.	0.8	4
57	A Phase 1 Randomized Placebo-Controlled Study to Assess the Safety, Immunogenicity and Genetic Stability of a New Potential Pandemic H7N9 Live Attenuated Influenza Vaccine in Healthy Adults. Vaccines, 2020, 8, 296.	4.4	4
58	Contribution of neuraminidase of influenza viruses to the sensitivity to serum inhibitors and reassortment efficiency. Molecular Genetics, Microbiology and Virology, 2014, 29, 130-138.	0.3	2
59	<i>In vitro</i> antiviral activity of VIFERON® rectal suppositories against SARS-CoV-2. Russian Journal of Infection and Immunity, 2022, 12, 142-148.	0.7	1
60	The future of haemagglutinin stalk-based universal influenza vaccines. Lancet Infectious Diseases, The, 2022, 22, 926-928.	9.1	1
61	Oral influenza vaccination—a possible solution for the next pandemic?. Lancet Infectious Diseases, The, 2020, 20, 385-386.	9.1	0
62	Cross-protective potential of a MF59-adjuvanted quadrivalent influenza vaccine in older adults. Lancet Infectious Diseases, The, 2021, 21, 900-901.	9.1	0
63	Quadrivalent adjuvanted haemagglutinin nanoparticle influenza vaccine: a step towards better protection of older adults from the constantly mutating H3N2 influenza viruses. Lancet Infectious Diseases, The, 2022, 22, 7-8.	9.1	Ο
64	Immunogenicity and protective efficacy of prime-boost immunization in mice vaccinated with live and inactivated influenza A (H5N1) vaccines. Russian Journal of Infection and Immunity, 2019, 9, 67-75.	0.7	0
65	Early protection against influenza by pandemic live attenuated influenza vaccines. Meditsinskii Akademicheskii Zhurnal, 2019, 19, 37-46.	0.2	Ο
66	Neutralizing epitope of the Fusion Protein of Respiratory Syncytial Virus Embedded in the HA Molecule of LAIV Virus is not Sufficient to Prevent RS Virus Pulmonary Replication but Ameliorates Lung Pathology following RSV Infection in Mice. Open Microbiology Journal, 2020, 14, 147-156.	0.7	0
67	Immunogenicity and protective activity of recombinant influenza viruses expressing fragments of ScaAB lipoprotein of group B streptococci in a mouse model. Meditsinskii Akademicheskii Zhurnal, 2020, 20, 33-42.	0.2	Ο
68	Optimization of M2e cassette amino acid composition for the development of universal influenza vaccine. Meditsinskii Akademicheskii Zhurnal, 2021, 21, 127-130.	0.2	0
69	Growth characteristics of experimental live influenza vaccine strains with modified NP and NS genes. Meditsinskii Akademicheskii Zhurnal, 2021, 21, 135-139.	0.2	0
70	Prospects of using conservative linear B-cell epitopes of influenza virus A neuraminidase for induction of cross-protective immune response. Meditsinskii Akademicheskii Zhurnal, 2021, 21, 147-151.	0.2	0
71	Generation and in vitro characterization of engineered cold-adapted influenza A strains with modified NS gene. Meditsinskii Akademicheskii Zhurnal, 2021, 21, 153-158.	0.2	0
72	Construction of the vaccine strain of the influenza B virus with chimeric hemagglutinin to induce a cross-protective immune response. Meditsinskii Akademicheskii Zhurnal, 2021, 21, 91-96.	0.2	0