
Gabriel Menard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3736711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room Temperature Reduction of CO ₂ to Methanol by Al-Based Frustrated Lewis Pairs and Ammonia Borane. Journal of the American Chemical Society, 2010, 132, 1796-1797.	6.6	522
2	Stoichiometric Reduction of CO ₂ to CO by Aluminumâ€Based Frustrated Lewis Pairs. Angewandte Chemie - International Edition, 2011, 50, 8396-8399.	7.2	191
3	C–H Bond Activation by Radical Ion Pairs Derived from R ₃ P/Al(C ₆ F ₅) ₃ Frustrated Lewis Pairs and N ₂ O. Journal of the American Chemical Society, 2013, 135, 6446-6449.	6.6	156
4	Redox-switchable carboranes for uranium capture and release. Nature, 2020, 577, 652-655.	13.7	131
5	A Radical Mechanism for Frustrated Lewis Pair Reactivity. CheM, 2017, 3, 259-267.	5.8	129
6	CH Activation of Isobutylene Using Frustrated Lewis Pairs: Aluminum and Boron σâ€Allyl Complexes. Angewandte Chemie - International Edition, 2012, 51, 4409-4412.	7.2	109
7	H ₂ Activation and Hydride Transfer to Olefins by Al(C ₆ F ₅) ₃ â€Based Frustrated Lewis Pairs. Angewandte Chemie - International Edition, 2012, 51, 8272-8275.	7.2	107
8	CO2 reduction via aluminum complexes of ammonia boranes. Dalton Transactions, 2013, 42, 5447.	1.6	84
9	Stoichiometric Reduction of CO ₂ to CO by Phosphine/AlX ₃ -Based Frustrated Lewis Pairs. Organometallics, 2013, 32, 4416-4422.	1.1	83
10	Microfluidic Studies of CO ₂ Sequestration by Frustrated Lewis Pairs. Journal of the American Chemical Society, 2014, 136, 3875-3880.	6.6	55
11	Towards Catalytic Ammonia Oxidation to Dinitrogen: A Synthetic Cycle by Using a Simple Manganese Complex. Chemistry - A European Journal, 2017, 23, 11479-11484.	1.7	48
12	Exchange chemistry of tBu3P(CO2)B(C6F5)2Cl. Dalton Transactions, 2012, 41, 9016.	1.6	42
13	Maximizing Electron Exchange in a [Fe ₃] Cluster. Journal of the American Chemical Society, 2016, 138, 2235-2243.	6.6	40
14	Contrasting the Reactivity of Ethylene and Propylene with P/Al and P/B Frustrated Lewis Pairs. Organometallics, 2013, 32, 6759-6763.	1.1	35
15	Monocyclic Di- and Triphosphinophosphonium Cations:Â New Foundational Frameworks forcatena-Phosphorus Chemistry. Inorganic Chemistry, 2007, 46, 4277-4285.	1.9	34
16	Al/Fe isomorphic substitution versus Fe2O3 clusters formation in Fe-doped aluminosilicate nanotubes (imogolite). Journal of Nanoparticle Research, 2015, 17, 1.	0.8	31
17	Switchable Aromaticity in an Isostructural Mn Phthalocyanine Series Isolated in Five Separate Redox States. Journal of the American Chemical Society, 2019, 141, 2604-2613.	6.6	28
18	Activation of H2 using P/Al based frustrated Lewis pairs and reactions with olefins. Dalton Transactions, 2013, 42, 13685.	1.6	25

GABRIEL MENARD

#	Article	IF	CITATIONS
19	Cationic magnesium hydride [MgH]+ stabilized by an NNNN-type macrocycle. Chemical Communications, 2019, 55, 3199-3202.	2.2	22
20	Probing Hydrogen Atom Transfer at a Phosphorus(V) Oxide Bond Using a "Bulky Hydrogen Atom― Surrogate: Analogies to PCET. Journal of the American Chemical Society, 2018, 140, 15375-15383.	6.6	19
21	Symmetric Phthalocyanine Charge Carrier for Dual Redox Flow Battery/Capacitor Applications. ACS Applied Energy Materials, 2019, 2, 5391-5396.	2.5	15
22	Exposing the inadequacy of redox formalisms by resolving redox inequivalence within isovalent clusters. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15836-15841.	3.3	11
23	Reactivity of the molecular magnesium hydride cation [MgH]+ supported by an NNNN macrocycle. Polyhedron, 2020, 178, 114331.	1.0	10
24	Synthesis, characterization, and electrochemical properties of a first-row metal phthalocyanine series. Dalton Transactions, 2020, 49, 16268-16277.	1.6	10
25	Multiple N–H and C–H Hydrogen Atom Abstractions Through Coordination-Induced Bond Weakening at Fe-Amine Complexes. Inorganic Chemistry, 2021, 60, 8242-8251.	1.9	10
26	Synthesis, Characterization, and Electrochemical Analyses of Vanadocene Tetrametaphosphate and Phosphinate Derivatives. Organometallics, 2018, 37, 848-854.	1.1	8
27	A Mono-, Di-, and Trivanadocene Phosphorus Oxide Series: Synthesis, Magnetism, and Chemical/Electrochemical Properties. Inorganic Chemistry, 2018, 57, 11543-11551.	1.9	8
28	Carborane Stabilized "19-Electron―Molybdenum Metalloradical. Journal of the American Chemical Society, 2021, 143, 9842-9848.	6.6	8
29	Environmental non-governmental organizations: key players in development in a changing climate—a case study of Mali. Environment, Development and Sustainability, 2013, 15, 117-131.	2.7	7
30	Selective electrochemical capture and release of uranyl from aqueous alkali, lanthanide, and actinide mixtures using redox-switchable carboranes. Chemical Science, 2022, 13, 3369-3374.	3.7	7
31	An untethered C3v-symmetric triarylphosphine oxide locked by intermolecular hydrogen bonding. Chemical Communications, 2019, 55, 3761-3764.	2.2	6
32	Isolable cyclic (alkyl)(amino)carbene–phosphonyl radical adducts. Chemical Communications, 2020, 56, 1341-1344.	2.2	5
33	Probing reaction processes and reversibility in Earth-abundant Na ₃ FeF ₆ for Na-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 20052-20064.	1.3	5
34	Redox-Controlled Reactivity at Boron: Parallels to Frustrated Lewis/Radical Pair Chemistry. Inorganic Chemistry, 2020, 59, 10343-10352.	1.9	4
35	Facile proton-coupled electron transfer enabled by coordination-induced E–H bond weakening to boron. Chemical Communications, 2021, 57, 6903-6906.	2.2	4
36	A tetranuclear nickel cluster isolated in multiple high-valent states. Chemical Communications, 2020, 56, 8182-8185.	2.2	3

GABRIEL MENARD

#	Article	IF	CITATIONS
37	Extensive Redox Non-Innocence in Iron Bipyridine-Diimine Complexes: a Combined Spectroscopic and Computational Study. Inorganic Chemistry, 2021, 60, 18296-18306.	1.9	3
38	Unusual C–H Bond Activation and C(sp ³)–C(sp ³) Bond Formation at an Fe(II) Bis(amide) Carbene Complex. Organometallics, 2020, 39, 116-122.	1.1	1
39	Frontispiece: Towards Catalytic Ammonia Oxidation to Dinitrogen: A Synthetic Cycle by Using a Simple Manganese Complex. Chemistry - A European Journal, 2017, 23, .	1.7	0
40	Membrane-Less Redox Flow Batteries: A Split Biphasic Architecture. ECS Meeting Abstracts, 2022, MA2022-01, 137-137.	0.0	0