Ewald M Hennig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3736088/publications.pdf

Version: 2024-02-01

81900 4,540 79 39 citations h-index papers

g-index 90 90 90 3834 docs citations times ranked citing authors all docs

102487

66

#	Article	IF	Citations
1	Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obesity Reviews, 2006, 7, 239-250.	6.5	352
2	Plantar pressure differences between obese and non-obese adults: a biomechanical analysis. International Journal of Obesity, 2001, 25, 1674-1679.	3.4	256
3	The Pathomechanics of Plantar Fasciitis. Sports Medicine, 2006, 36, 585-611.	6.5	242
4	The biomechanics of adiposity - structural and functional limitations of obesity and implications for movement. Obesity Reviews, 2002, 3, 35-43.	6.5	193
5	The biomechanics of restricted movement in adult obesity. Obesity Reviews, 2006, 7, 13-24.	6.5	184
6	The influence of stretching and warmâ€up exercises on Achilles tendon reflex activity. Journal of Sports Sciences, 1995, 13, 481-490.	2.0	177
7	Plantar Pressure Distribution Patterns of Young School Children in Comparison to Adults. Foot and Ankle International, 1994, 15, 35-40.	2.3	149
8	Pressure Distribution Patterns under the Feet of Children in Comparison with Adults. Foot & Ankle, 1991, 11, 306-311.	0.7	146
9	The impact of childhood obesity on musculoskeletal form Obesity Reviews, 2006, 7, 209-218.	6. 5	146
10	Differential shock transmission response of the human body to impact severity and lower limb posture. Journal of Biomechanics, 1996, 29, 1531-1537.	2.1	132
11	Dominant role of interface over knee angle for cushioning impact loading and regulating initial leg stiffness. Journal of Biomechanics, 1996, 29, 1523-1529.	2.1	125
12	Plantar Pressure Distribution Patterns During Gait in Diabetic Neuropathy Patients with a History of Foot Ulcers. Clinics, 2009, 64, 113-120.	1.5	120
13	Heel to toe motion characteristics in Parkinson patients during free walking. Clinical Biomechanics, 2001, 16, 806-812.	1.2	105
14	The Arch Index: A Measure of Flat or Fat Feet?. Foot and Ankle International, 2004, 25, 575-581.	2.3	105
15	Enhanced somatosensory information decreases postural sway in older people. Gait and Posture, 2012, 35, 630-635.	1.4	102
16	In-Shoe Pressure Distribution for Running in Various Types of Footwear. Journal of Applied Biomechanics, 1995, 11, 299-310.	0.8	91
17	Perceptual and biomechanical variables for running in identical shoe constructions with varying midsole hardness. Clinical Biomechanics, 1997, 12, 294-300.	1.2	90
18	Relationships between Ground Reaction Force and Tibial Bone Acceleration Parameters. International Journal of Sport Biomechanics, 1991, 7, 303-309.	2.0	83

#	Article	IF	Citations
19	Cushioning properties of footwear during walking: accelerometer and force platform measurements. Clinical Biomechanics, 1992, 7, 181-184.	1.2	81
20	Role of ankle mobility in foot rollover during gait in individuals with diabetic neuropathy. Clinical Biomechanics, 2009, 24, 687-692.	1.2	80
21	Biomechanical Variables and the Perception of Cushioning for Running in Various Types of Footwear. Journal of Applied Biomechanics, 1996, 12, 143-150.	0.8	78
22	Tibial shock measured with bone and skin mounted transducers. Journal of Biomechanics, 1995, 28, 989-993.	2.1	77
23	The effect of diabetic neuropathy and previous foot ulceration in EMG and ground reaction forces during gait. Clinical Biomechanics, 2008, 23, 584-592.	1.2	76
24	Transfer of tennis racket vibrations onto the human forearm. Medicine and Science in Sports and Exercise, 1992, 24, 1134???1140.	0.4	74
25	Actual and perceived running performance in soccer shoes: A series of eight studies. Footwear Science, 2009, 1, 5-17.	2.1	69
26	The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists. Journal of Sports Sciences, 2000, 18, 173-181.	2.0	68
27	Use of Ground Reaction Force Parameters in Predicting Peak Tibial Accelerations in Running. Journal of Applied Biomechanics, 1993, 9, 306-314.	0.8	67
28	Sensitivity Mapping of the Human Foot: Thresholds at 30 Skin Locations. Foot and Ankle International, 2009, 30, 986-991.	2.3	64
29	A comparison of lower limb EMG and ground reaction forces between barefoot and shod gait in participants with diabetic neuropathic and healthy controls. BMC Musculoskeletal Disorders, 2010, 11, 24.	1.9	55
30	Effects of Textured Insoles on Balance in People with Parkinson's Disease. PLoS ONE, 2013, 8, e83309.	2.5	52
31	An Approach to Biomechanical Profiling of Elite Distance Runners. International Journal of Sport Biomechanics, 1985, 1, 36-62.	2.0	50
32	The Influence of Soccer Shoes on Kicking Velocity in Full-Instep Kicks. Exercise and Sport Sciences Reviews, 2008, 36, 91-97.	3.0	50
33	Contribution of angular motion and gravity to tibial acceleration. Medicine and Science in Sports and Exercise, 1991, 23, 360???363.	0.4	49
34	The Influence of Soccer Shoe Design on Player Performance and Injuries. Research in Sports Medicine, 2011, 19, 186-201.	1.3	48
35	The influence of soccer shoe design on playing performance: a series of biomechanical studies. Footwear Science, 2010, 2, 3-11.	2.1	47
36	Dynamic plantar pressure distribution measurements in hemiparetic patients. Clinical Biomechanics, 1997, 12, 60-65.	1.2	46

3

#	Article	IF	CITATIONS
37	Transfer function between tibial acceleration and ground reaction force. Journal of Biomechanics, 1995, 28, 113-117.	2.1	45
38	The Role of External Nonrigid Ankle Bracing in Limiting Ankle Inversion. Clinical Journal of Sport Medicine, 1995, 5, 18-24.	1.8	43
39	Effects of different shoe-lacing patterns on the biomechanics of running shoes. Journal of Sports Sciences, 2009, 27, 267-275.	2.0	43
40	Rearfoot Motion and Pressure Distribution Patterns during Running in Shoes with Varus and Valgus Wedges. Journal of Applied Biomechanics, 1995, 11, 177-187.	0.8	39
41	Influence of Racket Properties on Injuries and Performance in Tennis. Exercise and Sport Sciences Reviews, 2007, 35, 62-66.	3.0	38
42	Lower and Upper Extremity Loading in Nordic Walking in Comparison with Walking and Running. Journal of Applied Biomechanics, 2011, 27, 22-31.	0.8	34
43	Effects of Different Shoe-Lacing Patterns on Dorsal Pressure Distribution During Running and Perceived Comfort. Research in Sports Medicine, 2010, 18, 176-187.	1.3	25
44	Eighteen years of running shoe testing in Germany – a series of biomechanical studies. Footwear Science, 2011, 3, 71-81.	2.1	25
45	A soccer game analysis of two World Cups: playing behavior between elite female and male soccer players. Footwear Science, 2010, 2, 51-56.	2.1	22
46	Mechanical Circulatory Supportâ€"Results, Developments and Trends. Journal of Cardiovascular Translational Research, 2011, 4, 332-339.	2.4	22
47	Restriction of foot supination by ankle braces in sudden fall situations. Clinical Biomechanics, 1997, 12, 253-258.	1.2	21
48	A Lactate Kinetics Method for Assessing the Maximal Lactate Steady State Workload. Frontiers in Physiology, 2018, 9, 310.	2.8	20
49	Plantar pressure measurements for the evaluation of shoe comfort, overuse injuries and performance in soccer. Footwear Science, 2014, 6, 119-127.	2.1	19
50	A whole body vibration perception map and associated acceleration loads at the lower leg, hip and head. Medical Engineering and Physics, 2015, 37, 642-649.	1.7	19
51	Can We Rely on Mobile Devices and Other Gadgets to Assess the Postural Balance of Healthy Individuals? A Systematic Review. Sensors, 2019, 19, 2972.	3.8	18
52	In-Shoe Pressure Distributions for Cycling with Two Types of Footwear at Different Mechanical Loads. Journal of Applied Biomechanics, 1995, 11, 68-80.	0.8	17
53	Plantar Pressures During Shod Gait in Diabetic Neuropathic Patients with and without a History of Plantar Ulceration. Journal of the American Podiatric Medical Association, 2009, 99, 285-294.	0.3	17
54	Biomechanical and functional indicators in male semiprofessional soccer players with increased hip alpha angles vs. amateur soccer players. BMC Musculoskeletal Disorders, 2014, 15, 88.	1.9	13

#	Article	IF	CITATIONS
55	Criteria for gender-specific soccer shoe development. Footwear Science, 2014, 6, 89-96.	2.1	9
56	The Influence Of Friction Properties Of Shoe Upper Materials On Kicking Velocity In Soccer. Journal of Biomechanics, 2007, 40, S195.	2.1	7
57	Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination. PLoS ONE, 2015, 10, e0130290.	2.5	7
58	Effects of different shoe lacing patterns on perceptual variables and dorsal pressure distribution in heelâ€toe running. Journal of Foot and Ankle Research, 2008, 1, .	1.9	5
59	The influence of tennis racket design on impact induced arm oscillations. Journal of Biomechanics, 1994, 27, 669.	2.1	3
60	In-shoe pressure distribution in cycling and running shoes during steady-rate cycling. Journal of Biomechanics, 1993, 26, 318.	2.1	2
61	HIGH RESISTANCE SHANK MUSCLE STRENGTH TRAINING CHANGES FOOT BEHAVIOUR DURING A SUDDEN ANKLE SUPINATION. British Journal of Sports Medicine, 2013, 47, e3.40-e3.	6.7	2
62	Skin and bone mounted acceleration signals. Journal of Biomechanics, 1993, 26, 299.	2.1	1
63	Effectiveness of force application in cycling. Journal of Biomechanics, 1993, 26, 317.	2.1	1
64	The influence of static stretching and a 10-minute warm-up run on reflex force development. Journal of Biomechanics, 1993, 26, 364.	2.1	1
65	Pressure distribution under the foot at the take off in volleyball jumps and fosbury flop high jumps. Journal of Biomechanics, 1994, 27, 677.	2.1	1
66	The influence of different shoe lacing conditions on plantar pressure distribution, shock attenuation and rearfoot motion in running. Clinical Biomechanics, 2008, 23, 673-674.	1.2	1
67	Re: The vertical component of the ground reaction force does not reflect horizontal braking or acceleration per se. Clinical Biomechanics, 2009, 24, 595.	1.2	1
68	The influence of two unstable shoe modifications on lower extremity kinetics during walking and postural balance in elderly men. Footwear Science, 2012, 4, 83-91.	2.1	1
69	Performance differences between female and male soccer players - recommendations for shoe designs. Footwear Science, 2013, 5, S5-S6.	2.1	1
70	Plantar pressure distribution patterns during soccer specific movements in different footwear constructions. Footwear Science, 2013, 5, \$3-\$5.	2.1	1
71	Whole-Body Vibration Improves the Accuracy of Motor Performance. , 2012, 02, .		1
72	Application of ultrasonic velocity measurement and capacitive pressure distribution measurements in gait analysis. Journal of Biomechanics, 1981, 14, 500.	2.1	0

#	Article	IF	CITATIONS
73	In-shoe pressure distribution for cycling at different cadences. Journal of Biomechanics, 1993, 26, 318.	2.1	O
74	In-shoe pressure distribution for cycling at different power outputs. Journal of Biomechanics, 1993, 26, 318.	2.1	0
75	In-shoe pressure distribution measurements in the triple jump. Journal of Biomechanics, 1993, 26, 324.	2.1	O
76	The influence of instability shoes on the balance performance of elderly women. Footwear Science, 2013, 5, S51-S52.	2.1	0
77	Running shoe quality perception of runners can be predicted from biomechanical variables. Footwear Science, 2017, 9, S5-S6.	2.1	O
78	Integration of commercial pressure measurement technologies. , 2019, , 699-708.		0
79	Druckverteilungsmessungen. , 2004, , 149-163.		0