
## Maria Cristina Campa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3735806/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Propane Dehydrogenation on Chromia/Silica and Chromia/Alumina Catalysts. Journal of Catalysis, 1994, 148, 36-46.                                                                                                                          | 6.2  | 139       |
| 2  | Catalytic activity of Co-ZSM-5 for the abatement of NOx with methane in the presence of oxygen.<br>Applied Catalysis B: Environmental, 1996, 8, 315-331.                                                                                  | 20.2 | 109       |
| 3  | Cobalt supported on ZrO2: catalysts characterization and their activity for the reduction of NO with C3H6 in the presence of excess O2. Applied Catalysis B: Environmental, 2000, 28, 43-54.                                              | 20.2 | 89        |
| 4  | The catalytic activity of Cu-ZSM-5 and Cu-Y zeolites in NO decomposition: dependence on copper concentration. Catalysis Letters, 1994, 23, 141-149.                                                                                       | 2.6  | 79        |
| 5  | The selective catalytic reduction of NO with CH4 on Mn-ZSM5: A comparison with Co-ZSM5 and Cu-ZSM5. Applied Catalysis B: Environmental, 1998, 18, 151-162.                                                                                | 20.2 | 60        |
| 6  | N 2 O decomposition on CoO x , CuO x , FeO x or MnO x supported on ZrO 2 : The effect of zirconia doping with sulfates or K + on catalytic activity. Applied Catalysis B: Environmental, 2016, 187, 218-227.                              | 20.2 | 54        |
| 7  | Formation of the MoVI Surface Phase on MoOx/ZrO2 Catalysts. The Journal of Physical Chemistry, 1995, 99, 5556-5567.                                                                                                                       | 2.9  | 52        |
| 8  | Rhodium supported on tetragonal or monoclinic ZrO2 as catalyst for the partial oxidation of methane. Applied Catalysis B: Environmental, 2013, 142-143, 423-431.                                                                          | 20.2 | 42        |
| 9  | Structure of Crv species on the surface of various oxides : reactivity with NH3 and H2O, as investigated by EPR spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 207.                                       | 1.7  | 41        |
| 10 | CoOx/sulphated-ZrO2 and CoSO4/ZrO2 as catalysts for the abatement of NO with C3H6 in the presence of excess O2. Applied Catalysis B: Environmental, 2003, 41, 301-312.                                                                    | 20.2 | 41        |
| 11 | The catalytic activity of cobalt-exchanged mordenites for the abatement of NO with CH4 in the presence of excess O2. Applied Catalysis B: Environmental, 2003, 46, 511-522.                                                               | 20.2 | 34        |
| 12 | In situ sulphated CuOx/ZrO2 and CuOx/sulphated-ZrO2 as catalysts for the reduction of NOx with NH3 in the presence of excess O2. Applied Catalysis B: Environmental, 2005, 60, 83-92.                                                     | 20.2 | 34        |
| 13 | The simultaneous selective catalytic reduction of N 2 O and NO X with CH 4 on Co- and Ni-exchanged mordenite. Applied Catalysis B: Environmental, 2015, 168-169, 293-302.                                                                 | 20.2 | 32        |
| 14 | CuOx/sulphated-ZrO2, in situ sulphated-CuOx/ZrO2, and CuSO4/ZrO2 as catalysts for the abatement of NO with C3H6 in the presence of excess O2. Applied Catalysis B: Environmental, 2002, 39, 115-124.                                      | 20.2 | 31        |
| 15 | The effect of sulphation on the catalytic activity of CoOx/ZrO2 for NO reduction with NH3 in the presence of O2. Applied Catalysis B: Environmental, 2009, 89, 33-40.                                                                     | 20.2 | 27        |
| 16 | Isolated Co2+ and [Coâ^'Oâ^'Co]2+ Species in Na-MOR Exchanged with Cobalt to Various Extents:  An FTIR<br>Characterization by CO Adsorption of Oxidized and Prereduced Samples. Journal of Physical Chemistry<br>C, 2008, 112, 5093-5101. | 3.1  | 26        |
| 17 | The dependence of catalytic activity for N2O decomposition on the exchange extent of cobalt or copper in Na-MOR, H-MOR and Na-MFI. Applied Catalysis B: Environmental, 2009, 91, 347-354.                                                 | 20.2 | 26        |
| 18 | Cuo–ZnO–Al2O3mixed oxides: preparation, bulk and surface characterization. Journal of Materials<br>Chemistry, 1993, 3, 505-511.                                                                                                           | 6.7  | 23        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | FTIR of adsorbed species on Co-H-MOR and Co-Na-MOR under CH4+NO+O2 stream: Catalytic activity and selectivity. Catalysis Today, 2010, 155, 192-198.                                                                                                   | 4.4  | 18        |
| 20 | N2O decomposition and reduction on Co-MOR, Fe-MOR and Ni-MOR catalysts: in situ UV–vis DRS and operando FTIR investigation. An insight on the reaction pathways. Applied Catalysis B: Environmental, 2019, 240, 19-29.                                | 20.2 | 17        |
| 21 | Operando FTIR study of Fe-MOR, Co-MOR, and Ni-MOR as catalysts for simultaneous abatement of NOx<br>and N2O with CH4 in the presence of O2. An insight on reaction pathway Catalysis Today, 2019, 336,<br>131-138.                                    | 4.4  | 16        |
| 22 | Characterization of MoOx/ZrO2 system by XPS and IR spectroscopies. Surface and Interface Analysis, 1994, 22, 398-402.                                                                                                                                 | 1.8  | 14        |
| 23 | Selective catalytic reduction of N2O with CH4 on Ni-MOR: A comparison with Co-MOR and Fe-MOR catalysts. Catalysis Today, 2014, 227, 116-122.                                                                                                          | 4.4  | 14        |
| 24 | The selective catalytic reduction of N2O with CH4 on Na-MOR and Na-MFI exchanged with copper, cobalt or manganese. Applied Catalysis B: Environmental, 2012, 111-112, 90-95.                                                                          | 20.2 | 12        |
| 25 | The catalytic activity of FeOx/ZrO2 and FeOx/sulphated-ZrO2 for the NO abatement with C3H6 in the presence of excess O2. Applied Catalysis B: Environmental, 2005, 60, 23-31.                                                                         | 20.2 | 10        |
| 26 | Cobalt-exchanged mordenites: preparation, characterization and catalytic activity for the abatement of NO with CH4 in the presence of excess O2. Journal of Porous Materials, 2007, 14, 251-261.                                                      | 2.6  | 9         |
| 27 | CoOx and FeOx supported on ZrO2 for the simultaneous abatement of NOx and N2O with C3H6 in the presence of O2. Applied Catalysis B: Environmental, 2019, 240, 367-372.                                                                                | 20.2 | 9         |
| 28 | Simultaneous abatement of NO and N2O with CH4 over modified Al2O3 supported Pt,Pd,Rh. Catalysis<br>Today, 2022, 384-386, 76-87.                                                                                                                       | 4.4  | 9         |
| 29 | Highly stable Pt?Ru/C as an anode catalyst for use in polymer electrolyte fuel cells. Journal of Solid<br>State Electrochemistry, 2004, 8, 544.                                                                                                       | 2.5  | 8         |
| 30 | Reduction kinetics of CuO-ZnO. Solid State Ionics, 1993, 63-65, 281-288.                                                                                                                                                                              | 2.7  | 7         |
| 31 | Structural, Magnetic, and Optical Properties of Co(II) in COxCd1-xIn2S4 Spinel Solid Solutions.<br>Journal of Solid State Chemistry, 1995, 114, 524-527.                                                                                              | 2.9  | 4         |
| 32 | Title is missing!. Catalysis Letters, 2000, 66, 81-86.                                                                                                                                                                                                | 2.6  | 4         |
| 33 | Sulphated-ZrO2 prepared by impregnation with ammonium, sodium, or copper sulphate: catalytic activity for NO abatement with propene in the presence of oxygen. Studies in Surface Science and Catalysis, 2000, 130, 1439-1444.                        | 1.5  | 4         |
| 34 | Location of Isolated Co <sup>2+</sup> and [Coâ^'Oâ^'Co] <sup>2+</sup> in Co-MOR as Investigated by<br>Means of FTIR with Acetonitrile and 2,4,5-Trimethylbenzonitrile as Probe Molecules. Journal of<br>Physical Chemistry C, 2010, 114, 17812-17818. | 3.1  | 4         |
| 35 | The simultaneous selective catalytic reduction of N2O and NO on Co–Na–MOR using CH4 alone as the reducing agent in the presence of excess O2. Catalysis Today, 2012, 191, 87-89.                                                                      | 4.4  | 4         |
| 36 | Reduction of nitric oxide with hydrogen on chromia / zirconia catalysts. Applied Catalysis B:<br>Environmental, 1994, 4, 257-273.                                                                                                                     | 20.2 | 2         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The catalytic activity of CoOx/sulphated-ZrO2 for the NO abatement with C3H6 in the presence of O2: the dependence of activity and selectivity on the sulphate content. Journal of Molecular Catalysis A, 2003, 204-205, 655-662. | 4.8 | 2         |
| 38 | Oscillatory Behaviour of Ni Supported on ZrO2 in the Catalytic Partial Oxidation of Methane as Determined by Activation Procedure. Materials, 2021, 14, 2495.                                                                     | 2.9 | 2         |
| 39 | Iron species in FeOx/ZrO2 and FeOx/sulphated-ZrO2 catalysts. Studies in Surface Science and Catalysis, 2005, 155, 329-337.                                                                                                        | 1.5 | 1         |