Mark A Kay

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3735802/mark-a-kay-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85 30,706 195 175 h-index g-index citations papers 6.89 250 14.2 33,741 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
195	Promoterless Gene Targeting Approach Combined to CRISPR/Cas9 Efficiently Corrects Hemophilia B Phenotype in Neonatal Mice <i>Frontiers in Genome Editing</i> , 2022 , 4, 785698	2.5	О
194	Evaluating the Genomic Parameters Governing rAAV-Mediated Homologous Recombination. <i>Molecular Therapy</i> , 2021 , 29, 1028-1046	11.7	3
193	RNA structure probing reveals the structural basis of Dicer binding and cleavage. <i>Nature Communications</i> , 2021 , 12, 3397	17.4	7
192	Promoterless, Nuclease-Free Genome Editing Confers a Growth Advantage for Corrected Hepatocytes in Mice With Methylmalonic Acidemia. <i>Hepatology</i> , 2021 , 73, 2223-2237	11.2	11
191	Improved Genome Editing through Inhibition of FANCM and Members of the BTR Dissolvase Complex. <i>Molecular Therapy</i> , 2021 , 29, 1016-1027	11.7	2
190	The 3TtsRNAs are aminoacylated: Implications for their biogenesis. <i>PLoS Genetics</i> , 2021 , 17, e1009675	6	1
189	AAV vectors engineered to target insulin receptor greatly enhance intramuscular gene delivery. <i>Molecular Therapy - Methods and Clinical Development</i> , 2020 , 19, 496-506	6.4	1
188	Tracking Adeno-Associated Virus Capsid Evolution by High-Throughput Sequencing. <i>Human Gene Therapy</i> , 2020 , 31, 553-564	4.8	12
187	The Role of tRNA Derived Small RNAs in Gene Regulation in Normal Tissues and Cancer. <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
186	Transfer RNA-Derived Small RNAs: Another Layer of Gene Regulation and Novel Targets for Disease Therapeutics. <i>Molecular Therapy</i> , 2020 , 28, 2340-2357	11.7	19
185	Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. <i>Nature Methods</i> , 2020 , 17, 852-860	21.6	46
184	Evolution of a Human-Specific Tandem Repeat Associated with ALS. <i>American Journal of Human Genetics</i> , 2020 , 107, 445-460	11	15
183	An orange calcium-modulated bioluminescent indicator for non-invasive activity imaging. <i>Nature Chemical Biology</i> , 2019 , 15, 433-436	11.7	14
182	Allele-Specific Silencing Ameliorates Restrictive Cardiomyopathy Attributable to a Human Myosin Regulatory Light Chain Mutation. <i>Circulation</i> , 2019 , 140, 765-778	16.7	14
181	Coupling AAV-mediated promoterless gene targeting to SaCas9 nuclease to efficiently correct liver metabolic diseases. <i>JCI Insight</i> , 2019 , 5,	9.9	15
180	Using a barcoded AAV capsid library to select for clinically relevant gene therapy vectors. <i>JCI Insight</i> , 2019 , 4,	9.9	32
179	A tRNA-Derived Small RNA Regulates Ribosomal Protein S28 Protein Levels after Translation Initiation in Humans and Mice. <i>Cell Reports</i> , 2019 , 29, 3816-3824.e4	10.6	21

(2016-2018)

178	Bioengineered AAV Capsids with Combined High Human Liver Transduction In Vivo and Unique Humoral Seroreactivity. <i>Molecular Therapy</i> , 2018 , 26, 289-303	11.7	97
177	Bioengineered Viral Platform for Intramuscular Passive Vaccine Delivery to Human Skeletal Muscle. <i>Molecular Therapy - Methods and Clinical Development</i> , 2018 , 10, 144-155	6.4	11
176	miR-122 removal in the liver activates imprinted microRNAs and enables more effective microRNA-mediated gene repression. <i>Nature Communications</i> , 2018 , 9, 5321	17.4	34
175	Future of rAAV Gene Therapy: Platform for RNAi, Gene Editing, and Beyond. <i>Human Gene Therapy</i> , 2017 , 28, 361-372	4.8	32
174	A 5TNoncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo. <i>Human Gene Therapy</i> , 2017 , 28, 125-134	4.8	11
173	Sequence-Modified Antibiotic Resistance Genes Provide Sustained Plasmid-Mediated Transgene Expression in Mammals. <i>Molecular Therapy</i> , 2017 , 25, 1187-1198	11.7	8
172	Survival Advantage of Both Human Hepatocyte Xenografts and Genome-Edited Hepatocytes for Treatment of	11.7	41
171	Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model. <i>EMBO Molecular Medicine</i> , 2017 , 9, 1346-1355	12	28
170	Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. <i>Nature Communications</i> , 2017 , 8, 2053	17.4	44
169	A transfer-RNA-derived small RNA regulates ribosome biogenesis. <i>Nature</i> , 2017 , 552, 57-62	50.4	204
168	Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid Eglucosidase. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	72
167	Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition. <i>Nucleic Acids Research</i> , 2017 , 45, 311-326	20.1	17
166	Dieter C. Gruenert, PhD (1949-2016). Nucleic Acid Therapeutics, 2016, 26, 266-7	4.8	
165	A universal system to select gene-modified hepatocytes in vivo. <i>Science Translational Medicine</i> , 2016 , 8, 342ra79	17.5	31
164	A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. <i>Nature Biotechnology</i> , 2016 , 34, 760-7	44.5	143
163	A Tribute to George Stamatoyannopoulos. <i>Human Gene Therapy</i> , 2016 , 27, 280-6	4.8	
162	RNA interference-induced hepatotoxicity results from loss of the first synthesized isoform of microRNA-122 in mice. <i>Nature Medicine</i> , 2016 , 22, 557-62	50.5	25
161	Increased precursor microRNA-21 following status epilepticus can compete with mature microRNA-21 to alter translation. <i>Experimental Neurology</i> , 2016 , 286, 137-146	5.7	7

160	RNA interference. Drugging RNAi. Science, 2015, 347, 1069-70	33.3	65
159	Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs. Human Gene Therapy Clinical Development, 2015 , 26, 5-14	3.2	25
158	Viral Vectors Take On HIV Infection. New England Journal of Medicine, 2015, 373, 770-2	59.2	2
157	Selecting the Best AAV Capsid for Human Studies. <i>Molecular Therapy</i> , 2015 , 23, 1800-1	11.7	7
156	Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. <i>Scientific Reports</i> , 2015 , 5, 8081	4.9	44
155	Somatic correction of junctional epidermolysis bullosa by a highly recombinogenic AAV variant. <i>Molecular Therapy</i> , 2014 , 22, 725-33	11.7	54
154	Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. <i>Nature</i> , 2014 , 506, 382-6	50.4	279
153	Regulation of microRNA-mediated gene silencing by microRNA precursors. <i>Nature Structural and Molecular Biology</i> , 2014 , 21, 825-32	17.6	19
152	Organ size control is dominant over Rb family inactivation to restrict proliferation in vivo. <i>Cell Reports</i> , 2014 , 8, 371-81	10.6	24
151	Genome editing of isogenic human induced pluripotent stem cells recapitulates long QT phenotype for drug testing. <i>Journal of the American College of Cardiology</i> , 2014 , 64, 451-9	15.1	123
150	Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. <i>Molecular Therapy</i> , 2014 , 22, 692-701	11.7	88
149	Translational Data from AAV-Mediated Gene Therapy of Hemophilia B in Dogs. <i>Human Gene Therapy Clinical Development</i> , 2014 , 150127063140004	3.2	2
148	Long-term safety and efficacy of factor IX gene therapy in hemophilia B. <i>New England Journal of Medicine</i> , 2014 , 371, 1994-2004	59.2	810
147	Characterization of vector-based delivery of neurogenin-3 in murine diabetes. <i>Human Gene Therapy</i> , 2014 , 25, 651-61	4.8	4
146	Weak base pairing in both seed and 3Tregions reduces RNAi off-targets and enhances si/shRNA designs. <i>Nucleic Acids Research</i> , 2014 , 42, 12169-76	20.1	17
145	Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. <i>Science Translational Medicine</i> , 2014 , 6, 264ra163	17.5	157
144	Minicircle DNA vectors achieve sustained expression reflected by active chromatin and transcriptional level. <i>Molecular Therapy</i> , 2013 , 21, 131-8	11.7	91
143	A mini-intronic plasmid (MIP): a novel robust transgene expression vector in vivo and in vitro. <i>Molecular Therapy</i> , 2013 , 21, 954-63	11.7	44

(2010-2013)

142	The anti-genomic (negative) strand of Hepatitis C Virus is not targetable by shRNA. <i>Nucleic Acids Research</i> , 2013 , 41, 3688-98	20.1	11
141	Cellular Immune Responses To Vector In a Gene Therapy Trial For Hemophilia B Using An AAV8 Self-Complementary Factor IX Vector. <i>Blood</i> , 2013 , 122, 717-717	2.2	
140	The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. <i>Cell</i> , 2012 , 151, 900-911	56.2	198
139	The extragenic spacer length between the 5Tand 3Tends of the transgene expression cassette affects transgene silencing from plasmid-based vectors. <i>Molecular Therapy</i> , 2012 , 20, 2111-9	11.7	47
138	AAV vectors containing rDNA homology display increased chromosomal integration and transgene persistence. <i>Molecular Therapy</i> , 2012 , 20, 1902-11	11.7	28
137	Ribosomal DNA integrating rAAV-rDNA vectors allow for stable transgene expression. <i>Molecular Therapy</i> , 2012 , 20, 1912-23	11.7	24
136	Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging. <i>Circulation Research</i> , 2012 , 111, 1494-503	15.7	81
135	rAAV-mediated tumorigenesis: still unresolved after an AAV assault. <i>Molecular Therapy</i> , 2012 , 20, 2014-	· 7 11.7	20
134	Expression determinants of mammalian argonaute proteins in mediating gene silencing. <i>Nucleic Acids Research</i> , 2012 , 40, 3704-13	20.1	32
133	Stable Factor IX Activity Following AAV-Mediated Gene Transfer in Patients with Severe Hemophilia B. <i>Blood</i> , 2012 , 120, 752-752	2.2	1
132	Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. <i>New England Journal of Medicine</i> , 2011 , 365, 2357-65	59.2	1271
131	Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. <i>Journal of Clinical Investigation</i> , 2011 , 121, 4850-60	15.9	303
130	State-of-the-art gene-based therapies: the road ahead. <i>Nature Reviews Genetics</i> , 2011 , 12, 316-28	30.1	515
129	Minicircle DNA-based gene therapy coupled with immune modulation permits long-term expression of 且-iduronidase in mice with mucopolysaccharidosis type I. <i>Molecular Therapy</i> , 2011 , 19, 450-60	11.7	77
128	Thermodynamic stability of small hairpin RNAs highly influences the loading process of different mammalian Argonautes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 9208-13	11.5	64
127	Adeno-Associated Viral Vector Mediated Gene Transfer for Hemophilia B. <i>Blood</i> , 2011 , 118, 5-5	2.2	2
126	A robust system for production of minicircle DNA vectors. <i>Nature Biotechnology</i> , 2010 , 28, 1287-9	44.5	223
125	A nonviral minicircle vector for deriving human iPS cells. <i>Nature Methods</i> , 2010 , 7, 197-9	21.6	590

124	Human tRNA-derived small RNAs in the global regulation of RNA silencing. <i>Rna</i> , 2010 , 16, 673-95	5.8	473
123	FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2010 , 299, E384-93	6	117
122	Low-level shRNA cytotoxicity can contribute to MYC-induced hepatocellular carcinoma in adult mice. <i>Molecular Therapy</i> , 2010 , 18, 161-70	11.7	35
121	Hyperactive sleeping beauty transposase enables persistent phenotypic correction in mice and a canine model for hemophilia B. <i>Molecular Therapy</i> , 2010 , 18, 1896-906	11.7	65
120	Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. <i>Hepatology</i> , 2010 , 51, 1200-8	11.2	97
119	An in vitro-identified high-affinity nucleosome-positioning signal is capable of transiently positioning a nucleosome in vivo. <i>Epigenetics and Chromatin</i> , 2010 , 3, 13	5.8	18
118	Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. <i>Journal of Clinical Investigation</i> , 2010 , 120, 3106-19	15.9	145
117	Early Clinical Trial Results Following Administration of a Low Dose of a Novel Self Complementary Adeno-Associated Viral Vector Encoding Human Factor IX In Two Subjects with Severe Hemophilia B. <i>Blood</i> , 2010 , 116, 248-248	2.2	17
116	Combined proteomic-RNAi screen for host factors involved in human hepatitis delta virus replication. <i>Rna</i> , 2009 , 15, 1971-9	5.8	31
115	A rapid protocol for construction and production of high-capacity adenoviral vectors. <i>Nature Protocols</i> , 2009 , 4, 547-64	18.8	56
114	Biological basis for restriction of microRNA targets to the 3Tuntranslated region in mammalian mRNAs. <i>Nature Structural and Molecular Biology</i> , 2009 , 16, 144-50	17.6	308
113	Novel minicircle vector for gene therapy in murine myocardial infarction. <i>Circulation</i> , 2009 , 120, S230-7	16.7	81
112	Capped small RNAs and MOV10 in human hepatitis delta virus replication. <i>Nature Structural and Molecular Biology</i> , 2008 , 15, 714-21	17.6	64
111	In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. <i>Journal of Virology</i> , 2008 , 82, 5887-911	6.6	423
110	Radioprotection in vitro and in vivo by minicircle plasmid carrying the human manganese superoxide dismutase transgene. <i>Human Gene Therapy</i> , 2008 , 19, 820-6	4.8	52
109	Silencing of hepatic fatty acid transporter protein 5 in vivo reverses diet-induced non-alcoholic fatty liver disease and improves hyperglycemia. <i>Journal of Biological Chemistry</i> , 2008 , 283, 22186-92	5.4	111
108	Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. <i>Molecular Therapy</i> , 2008 , 16, 548-56	11.7	129
107	The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. <i>Molecular Therapy</i> , 2008 , 16, 931-41	11.7	89

(2007-2008)

106	Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. <i>Molecular Therapy</i> , 2008 , 16, 1630-6	11.7	167
105	Hepatic parenchymal replacement in mice by transplanted allogeneic hepatocytes is facilitated by bone marrow transplantation and mediated by CD4 cells. <i>Hepatology</i> , 2008 , 47, 706-18	11.2	9
104	RNAi and gene therapy: a mutual attraction. <i>Hematology American Society of Hematology Education Program</i> , 2007 , 473-81	3.1	64
103	Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. <i>Nature Biotechnology</i> , 2007 , 25, 903-10	44.5	599
102	Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 2007, 25, 371-9	5.8	544
101	Distinct pathways of genomic progression to benign and malignant tumors of the liver. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 14771-6	11.5	165
100	Somatic integration from an adenoviral hybrid vector into a hot spot in mouse liver results in persistent transgene expression levels in vivo. <i>Molecular Therapy</i> , 2007 , 15, 146-56	11.7	37
99	Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. <i>Molecular Therapy</i> , 2007 , 15, 1348-55	11.7	110
98	Correction of DNA protein kinase deficiency by spliceosome-mediated RNA trans-splicing and sleeping beauty transposon delivery. <i>Molecular Therapy</i> , 2007 , 15, 1273-9	11.7	19
97	Adenovirus transduction is required for the correction of diabetes using Pdx-1 or Neurogenin-3 in the liver. <i>Molecular Therapy</i> , 2007 , 15, 255-63	11.7	97
96	Site-directed transposon integration in human cells. <i>Nucleic Acids Research</i> , 2007 , 35, e50	20.1	108
95	Rapid and stable knockdown of an endogenous gene in retinal pigment epithelium. <i>Human Gene Therapy</i> , 2007 , 18, 871-80	4.8	19
94	Cis-acting gene regulatory activities in the terminal regions of sleeping beauty DNA transposon-based vectors. <i>Human Gene Therapy</i> , 2007 , 18, 1193-204	4.8	38
93	The role of DNA-PKcs and artemis in opening viral DNA hairpin termini in various tissues in mice. <i>Journal of Virology</i> , 2007 , 81, 11304-21	6.6	50
92	DNA palindromes with a modest arm length of greater, similar 20 base pairs are a significant target for recombinant adeno-associated virus vector integration in the liver, muscles, and heart in mice. <i>Journal of Virology</i> , 2007 , 81, 11290-303	6.6	46
91	microRNAs outwit immune limitations in gene therapy. <i>Blood</i> , 2007 , 110, 4136-4137	2.2	
90	Therapeutic application of RNAi: is mRNA targeting finally ready for prime time?. <i>Journal of Clinical Investigation</i> , 2007 , 117, 3633-41	15.9	115
89	Minicircle Plasmid Containing the Human Manganese Superoxide Dismutase (MnSOD) Transgene Confers Radioprotection to Hematopoietic Progenitor Cell Line 32Dcl3 <i>Blood</i> , 2007 , 110, 5138-5138	2.2	

88	Liver transduction with recombinant adeno-associated virus is primarily restricted by capsid serotype not vector genotype. <i>Journal of Virology</i> , 2006 , 80, 426-39	6.6	86
87	The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. <i>Journal of Virology</i> , 2006 , 80, 9831-6	6.6	310
86	Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. <i>Molecular Therapy</i> , 2006 , 14, 45-53	11.7	465
85	Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells. <i>Blood</i> , 2006 , 107, 4182-8	2.2	68
84	Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. <i>Nature Medicine</i> , 2006 , 12, 342-7	50.5	1525
83	Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. <i>Nature</i> , 2006 , 441, 537-41	50.4	1358
82	Osteosarcoma Derived from Cultured Mesenchymal Stem Cells <i>Blood</i> , 2006 , 108, 2554-2554	2.2	10
81	Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. <i>Human Gene Therapy</i> , 2005 , 16, 126-31	4.8	151
80	A direct comparison of two nonviral gene therapy vectors for somatic integration: in vivo evaluation of the bacteriophage integrase phiC31 and the Sleeping Beauty transposase. <i>Molecular Therapy</i> , 2005 , 11, 695-706	11.7	66
79	Stability and repeat regeneration potential of the engineered liver tissues under the kidney capsule in mice. <i>Cell Transplantation</i> , 2005 , 14, 621-7	4	33
78	Liver tissue engineering at extrahepatic sites in mice as a potential new therapy for genetic liver diseases. <i>Hepatology</i> , 2005 , 41, 132-40	11.2	113
77	RNAi in drug development: Practical considerations 2005 , 384-395		
76	Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. Journal of Virology, 2005 , 79, 3606-14	6.6	139
75	Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. Journal of Virology, 2005 , 79, 214-24	6.6	258
74	Increased maintenance and persistence of transgenes by excision of expression cassettes from plasmid sequences in vivo. <i>Human Gene Therapy</i> , 2005 , 16, 558-70	4.8	42
73	Real-time in vivo imaging of stem cells following transgenesis by transposition. <i>Molecular Therapy</i> , 2005 , 12, 42-8	11.7	35
7 ²	High-resolution genome-wide mapping of transposon integration in mammals. <i>Molecular and Cellular Biology</i> , 2005 , 25, 2085-94	4.8	267
71	Modified infusion procedures affect recombinant adeno-associated virus vector type 2 transduction in the liver. <i>Human Gene Therapy</i> , 2005 , 16, 299-306	4.8	17

(2003-2005)

70	Mesenchymal Cancer Cells Can Arise from Ex Vivo Modified Mesenchymal Stem Cells <i>Blood</i> , 2005 , 106, 4326-4326	2.2	
69	In vivo activity of nuclease-resistant siRNAs. <i>Rna</i> , 2004 , 10, 766-71	5.8	421
68	Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. <i>Journal of Virology</i> , 2004 , 78, 3110-22	6.6	301
67	Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. <i>Molecular and Cellular Biology</i> , 2004 , 24, 9239-47	4.8	130
66	Extracellular matrix component cotransplantation prolongs survival of heterotopically transplanted human hepatocytes in mice. <i>Transplantation Proceedings</i> , 2004 , 36, 2469-70	1.1	7
65	Donor-derived, liver-specific protein expression after bone marrow transplantation. <i>Transplantation</i> , 2004 , 78, 530-6	1.8	6
64	Transgenesis of Multipotent Adult Progenitor Cells (MAPC) with Sleeping Beauty Transposons to Determine MAPC Homing and Persistence in Real-Time In Vivo <i>Blood</i> , 2004 , 104, 2099-2099	2.2	
63	Real-Time In Vivo Biodistribution of Multipotent Adult Progenitor Cells (MAPC): Role of the Immune System in MAPC Resistance in Non-Transplanted and Bone Marrow Transplanted Mice <i>Blood</i> , 2004 , 104, 507-507	2.2	
62	Helper-independent and AAV-ITR-independent chromosomal integration of double-stranded linear DNA vectors in mice. <i>Molecular Therapy</i> , 2003 , 7, 101-11	11.7	44
61	Helper-Independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. <i>Molecular Therapy</i> , 2003 , 8, 654-65	11.7	124
60	Free DNA ends are essential for concatemerization of synthetic double-stranded adeno-associated virus vector genomes transfected into mouse hepatocytes in vivo. <i>Molecular Therapy</i> , 2003 , 7, 112-21	11.7	19
59	The effect of age on hepatic gene transfer with self-inactivating lentiviral vectors in vivo. <i>Molecular Therapy</i> , 2003 , 8, 314-23	11.7	40
58	Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. <i>Molecular and Cellular Biology</i> , 2003 , 23, 8505-18	4.8	70
57	AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. <i>Blood</i> , 2003 , 101, 2963-72	2.2	607
56	A gene-deleted adenoviral vector results in phenotypic correction of canine hemophilia B without liver toxicity or thrombocytopenia. <i>Blood</i> , 2003 , 102, 2403-11	2.2	69
55	Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. <i>Blood</i> , 2003 , 102, 2412-9	2.2	172
54	Advancing Molecular Therapies through In Vivo Bioluminescent Imaging. <i>Molecular Imaging</i> , 2003 , 2, 153535002003031	3.7	
53	A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. <i>Hepatology</i> , 2003 , 38, 503-8	11.2	68

52	Looking into the safety of AAV vectors. <i>Nature</i> , 2003 , 424, 251	50.4	43
51	AAV serotype 2 vectors preferentially integrate into active genes in mice. <i>Nature Genetics</i> , 2003 , 34, 297-302	36.3	303
50	Progress and problems with the use of viral vectors for gene therapy. <i>Nature Reviews Genetics</i> , 2003 , 4, 346-58	30.1	1911
49	Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. <i>Molecular Therapy</i> , 2003 , 8, 495-500	11.7	394
48	Optimization of cis-acting elements for gene expression from nonviral vectors in vivo. <i>Human Gene Therapy</i> , 2003 , 14, 215-25	4.8	34
47	Inhibition of hepatitis B virus in mice by RNA interference. <i>Nature Biotechnology</i> , 2003 , 21, 639-44	44.5	539
46	Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. <i>Molecular Therapy</i> , 2003 , 7, 839-50	11.7	272
45	Episomal persistence of recombinant adenoviral vector genomes during the cell cycle in vivo. <i>Journal of Virology</i> , 2003 , 77, 7689-95	6.6	74
44	Pathways of removal of free DNA vector ends in normal and DNA-PKcs-deficient SCID mouse hepatocytes transduced with rAAV vectors. <i>Human Gene Therapy</i> , 2003 , 14, 871-81	4.8	20
43	Gene transfer for hemophilia and viral infection. International Journal of Hematology, 2002, 76, 147-147	2.3	1
43	Gene transfer for hemophilia and viral infection. <i>International Journal of Hematology</i> , 2002 , 76, 147-147 RNA interference in adult mice. <i>Nature</i> , 2002 , 418, 38-9	² 2.3	
			924
42	RNA interference in adult mice. <i>Nature</i> , 2002 , 418, 38-9 Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo.	50.4	924
42 41	RNA interference in adult mice. <i>Nature</i> , 2002 , 418, 38-9 Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. <i>Nature Biotechnology</i> , 2002 , 20, 999-1005 In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. <i>Molecular Therapy</i> ,	50.4	924
42 41 40	RNA interference in adult mice. <i>Nature</i> , 2002 , 418, 38-9 Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. <i>Nature Biotechnology</i> , 2002 , 20, 999-1005 In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. <i>Molecular Therapy</i> , 2002 , 6, 759-69 Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. <i>Molecular</i>	50.4 44.5 11.7	924 162 124
42 41 40 39	RNA interference in adult mice. <i>Nature</i> , 2002 , 418, 38-9 Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. <i>Nature Biotechnology</i> , 2002 , 20, 999-1005 In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. <i>Molecular Therapy</i> , 2002 , 6, 759-69 Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. <i>Molecular Therapy</i> , 2002 , 5, 676-84 A limited number of transducible hepatocytes restricts a wide-range linear vector dose response in	50.4 44.5 11.7	924 162 124 81
42 41 40 39 38	RNA interference in adult mice. <i>Nature</i> , 2002 , 418, 38-9 Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. <i>Nature Biotechnology</i> , 2002 , 20, 999-1005 In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. <i>Molecular Therapy</i> , 2002 , 6, 759-69 Determinants of hepatitis C translational initiation in vitro, in cultured cells and mice. <i>Molecular Therapy</i> , 2002 , 5, 676-84 A limited number of transducible hepatocytes restricts a wide-range linear vector dose response in recombinant adeno-associated virus-mediated liver transduction. <i>Journal of Virology</i> , 2002 , 76, 11343-9 A new adenoviral helper-dependent vector results in long-term therapeutic levels of human	50.4 44.5 11.7 11.7	924 162 124 81

34	Hepatocyte transplantation: clinical and experimental application. <i>Journal of Molecular Medicine</i> , 2001 , 79, 617-30	5.5	116
33	Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. <i>Nature Medicine</i> , 2001 , 7, 33-40	50.5	1066
32	Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. <i>Molecular Therapy</i> , 2001 , 3, 403-10	11.7	166
31	Lack of germline transmission of vector sequences following systemic administration of recombinant AAV-2 vector in males. <i>Molecular Therapy</i> , 2001 , 4, 586-92	11.7	136
30	Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. <i>Journal of Virology</i> , 2001 , 75, 6969-76	6.6	358
29	Efficient lentiviral transduction of liver requires cell cycling in vivo. <i>Nature Genetics</i> , 2000 , 24, 49-52	36.3	262
28	Sustained survival of human hepatocytes in mice: A model for in vivo infection with human hepatitis B and hepatitis delta viruses. <i>Nature Medicine</i> , 2000 , 6, 327-31	50.5	152
27	Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. <i>Nature Genetics</i> , 2000 , 24, 257-61	36.3	850
26	Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. <i>Nature Biotechnology</i> , 2000 , 18, 527-32	44.5	168
25	Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. <i>Nature Genetics</i> , 2000 , 25, 35-41	36.3	446
24	Therapeutic levels of human factor VIII and IX using HIV-1Based lentiviral vectors in mouse liver. <i>Blood</i> , 2000 , 96, 1173-1176	2.2	135
23	Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction. <i>Journal of Virology</i> , 2000 , 74, 3793-803	6.6	118
22	Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. <i>Molecular Therapy</i> , 2000 , 1, 522-32	11.7	212
21	Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. <i>Journal of Virology</i> , 2000 , 74, 9451-63	6.6	160
20	Isolation of recombinant adeno-associated virus vector-cellular DNA junctions from mouse liver. <i>Journal of Virology</i> , 1999 , 73, 5438-47	6.6	162
19	Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. <i>Journal of Virology</i> , 1999 , 73, 9314-24	6.6	84
18	Adeno-Associated Virus Vectors and Hematology. <i>Blood</i> , 1999 , 94, 864-874	2.2	81
17	Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. <i>Nature Medicine</i> , 1999 , 5, 64-70	50.5	373

16	Implication of interfering antibody formation and apoptosis as two different mechanisms leading to variable duration of adenovirus-mediated transgene expression in immune-competent mice. Journal of Virology, 1999, 73, 4755-66	6.6	31
15	The kinetics of rAAV integration in the liver. <i>Nature Genetics</i> , 1998 , 19, 13-5	36.3	159
14	Hepatocyte growth factor induces hepatocyte proliferation in vivo and allows for efficient retroviral-mediated gene transfer in mice. <i>Hepatology</i> , 1998 , 28, 707-16	11.2	101
13	Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. <i>Human Gene Therapy</i> , 1998 , 9, 2577-83	4.8	289
12	Methods for delivery of genes to hepatocytes in vivo using recombinant adenovirus vectors. <i>Methods in Molecular Medicine</i> , 1997 , 7, 205-12		
11	Adenoviral preterminal protein stabilizes mini-adenoviral genomes in vitro and in vivo. <i>Nature Biotechnology</i> , 1997 , 15, 1383-7	44.5	34
10	Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. <i>Nature Genetics</i> , 1997 , 16, 270-6	36.3	538
9	Method for multiple portal vein infusions in mice: quantitation of adenovirus-mediated hepatic gene transfer. <i>BioTechniques</i> , 1996 , 20, 278-85	2.5	91
8	Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. <i>Nature Genetics</i> , 1995 , 11, 191-7	36.3	257
7	A modified urokinase plasminogen activator induces liver regeneration without bleeding. <i>Human Gene Therapy</i> , 1995 , 6, 1029-37	4.8	42
6	Therapeutic serum concentrations of human alpha-1-antitrypsin after adenoviral-mediated gene transfer into mouse hepatocytes. <i>Hepatology</i> , 1995 , 21, 815-819	11.2	76
5	Assessment of recombinant adenoviral vectors for hepatic gene therapy. <i>Human Gene Therapy</i> , 1993 , 4, 403-9	4.8	295
4	Development of a clinical protocol for hepatic gene transfer: lessons learned in preclinical studies. <i>Pediatric Research</i> , 1993 , 33, 313-20	3.2	9
3	In vivo gene therapy of hemophilia B: sustained partial correction in factor IX-deficient dogs. <i>Science</i> , 1993 , 262, 117-9	33.3	288
2	Hepatic gene therapy: persistent expression of human alpha 1-antitrypsin in mice after direct gene delivery in vivo. <i>Human Gene Therapy</i> , 1992 , 3, 641-7	4.8	164
1	Escherichia coli Sepsis and Prolonged Hypophosphatemia Following Exertional Heat Stroke. <i>Pediatrics</i> , 1990 , 86, 307-309	7.4	2