Marie-Louise Frémond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3735663/publications.pdf

Version: 2024-02-01

54 papers

2,716 citations

279798 23 h-index 243625 44 g-index

58 all docs 58 docs citations

58 times ranked 4097 citing authors

#	Article	IF	CITATIONS
1	Detection of interferon alpha protein reveals differential levels and cellular sources in disease. Journal of Experimental Medicine, 2017, 214, 1547-1555.	8.5	288
2	Efficacy of the Janus kinase $1/2$ inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173 -activating mutations in 3 children. Journal of Allergy and Clinical Immunology, 2016, 138, 1752-1755.	2.9	192
3	Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. Journal of Experimental Medicine, 2021, 218, .	8.5	185
4	Type I interferon-mediated autoinflammation due to DNase II deficiency. Nature Communications, 2017 , 8 , 2176 .	12.8	164
5	Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease. Journal of Clinical Immunology, 2017, 37, 123-132.	3.8	163
6	Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling. Journal of Allergy and Clinical Immunology, 2017, 140, 543-552.e5.	2.9	159
7	Inherited CARD9 Deficiency in 2 Unrelated Patients With Invasive Exophiala Infection. Journal of Infectious Diseases, 2015, 211, 1241-1250.	4.0	141
8	Mutations in <i>COPA</i> lead to abnormal trafficking of STING to the Golgi and interferon signaling. Journal of Experimental Medicine, 2020, 217, .	8. 5	130
9	Next-Generation Sequencing for Diagnosis and Tailored Therapy: A Case Report of Astrovirus-Associated Progressive Encephalitis. Journal of the Pediatric Infectious Diseases Society, 2015, 4, e53-e57.	1.3	116
10	Reverse-Transcriptase Inhibitors in the Aicardi–GoutiÔres Syndrome. New England Journal of Medicine, 2018, 379, 2275-2277.	27.0	106
11	cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nature Genetics, 2020, 52, 1364-1372.	21.4	105
12	Overview of STING-Associated Vasculopathy with Onset in Infancy (SAVI) Among 21 Patients. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 803-818.e11.	3.8	98
13	Haploidentical Hematopoietic Stem Cell Transplantation with Post-Transplant Cyclophosphamide for Primary Immunodeficiencies and Inherited Disorders in Children. Biology of Blood and Marrow Transplantation, 2019, 25, 1363-1373.	2.0	78
14	A child with severe juvenile dermatomyositis treated with ruxolitinib. Brain, 2018, 141, e80-e80.	7.6	58
15	Anti–TNF-α Therapy May Cause Neonatal Neutropenia. Pediatrics, 2014, 134, e1189-e1193.	2.1	54
16	Efficacy of JAK1/2 inhibition in the treatment of chilblain lupus due to TREX1 deficiency. Annals of the Rheumatic Diseases, 2019, 78, 431-433.	0.9	53
17	JAK inhibitors are effective in a subset of patients with juvenile dermatomyositis: a monocentric retrospective study. Rheumatology, 2021, 60, 5801-5808.	1.9	52
18	Clinical spectrum and long-term follow-up of 14 cases with G6PC3 mutations from the French severe congenital neutropenia registry. Orphanet Journal of Rare Diseases, 2014, 9, 183.	2.7	48

#	Article	lF	Citations
19	STING-Mediated Lung Inflammation and Beyond. Journal of Clinical Immunology, 2021, 41, 501-514.	3.8	48
20	Enhanced cGAS-STING–dependent interferon signaling associated with mutations in ATAD3A. Journal of Experimental Medicine, 2021, 218, .	8.5	43
21	Use of ruxolitinib in COPA syndrome manifesting as life-threatening alveolar haemorrhage. Thorax, 2020, 75, 92-95.	5 . 6	36
22	Type I Interferonopathies: from a Novel Concept to Targeted Therapeutics. Current Rheumatology Reports, 2020, 22, 32.	4.7	30
23	Lung Inflammation in STING-Associated Vasculopathy with Onset in Infancy (SAVI). Cells, 2022, 11, 318.	4.1	28
24	Anti-MDA5 juvenile idiopathic inflammatory myopathy: a specific subgroup defined by differentially enhanced interferon- \hat{l}_{\pm} signalling. Rheumatology, 2020, 59, 1927-1937.	1.9	26
25	Inherited Immunodeficiency: A New Association With Early-Onset Childhood Panniculitis. Pediatrics, 2018, 141, S496-S500.	2.1	24
26	Successful haematopoietic stem cell transplantation in a case of pulmonary alveolar proteinosis due to GM-CSF receptor deficiency. Thorax, 2018, 73, 590-592.	5.6	24
27	JAK Inhibition in the Aicardi–GoutiÔres Syndrome. New England Journal of Medicine, 2020, 383, 2190-2193.	27.0	24
28	Emerging Place of JAK Inhibitors in the Treatment of Inborn Errors of Immunity. Frontiers in Immunology, 2021, 12, 717388.	4.8	23
29	JAK inhibition in STING-associated interferonopathy. Annals of the Rheumatic Diseases, 2016, 75, e75-e75.	0.9	22
30	Brief Report: Blockade of TANKâ€Binding Kinase 1/IKKÉ> Inhibits Mutant Stimulator of Interferon Genes (STING)–Mediated Inflammatory Responses in Human Peripheral Blood Mononuclear Cells. Arthritis and Rheumatology, 2017, 69, 1495-1501.	5.6	22
31	COPA syndrome, 5 years after: Where are we?. Joint Bone Spine, 2021, 88, 105070.	1.6	21
32	COPA Syndrome as a Cause of Lupus Nephritis. Kidney International Reports, 2019, 4, 1187-1189.	0.8	19
33	JAK inhibition in the type I interferonopathies. Journal of Allergy and Clinical Immunology, 2021, 148, 991-993.	2.9	19
34	Digestive perianastomotic ulcerations and Crohn's disease. Journal of Crohn's and Colitis, 2014, 8, 1624-1631.	1.3	17
35	Differential Expression of Interferon-Alpha Protein Provides Clues to Tissue Specificity Across Type I Interferonopathies. Journal of Clinical Immunology, 2021, 41, 603-609.	3.8	16
36	Circulating endothelial cells as markers of endothelial dysfunction during hematopoietic stem cell transplantation for pediatric primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2014, 134, 1203-1206.	2.9	12

#	Article	IF	Citations
37	Comment on: â€^Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors' by Giannelou et al: mutations in TRNT1 result in a constitutive activation of type I interferon signalling. Annals of the Rheumatic Diseases, 2019, 78, e86-e86.	0.9	12
38	Cellular and humoral immunity elicited by influenza vaccines in pediatric hematopoietic-stem cell transplantation. Human Immunology, 2012, 73, 884-890.	2.4	10
39	Mosaic Tetrasomy 9p: A Mendelian Condition Associated With Pediatric-Onset Overlap Myositis. Pediatrics, 2015, 136, e544-e547.	2.1	10
40	Bone Marrow Transplantation in Congenital Erythropoietic Porphyria: Sustained Efficacy but Unexpected Liver Dysfunction. Biology of Blood and Marrow Transplantation, 2020, 26, 704-711.	2.0	10
41	Life-Saving, Dose-Adjusted, Targeted Therapy in a Patient with a STAT3 Gain-of-Function Mutation. Journal of Clinical Immunology, 2021, 41, 807-810.	3.8	10
42	Systemic inflammatory syndrome in children with <scp><i>FARSA</i></scp> deficiency. Clinical Genetics, 2022, 101, 552-558.	2.0	7
43	Rheumatoid factor positive polyarticular juvenile idiopathic arthritis associated with a novel <i>COPA</i> mutation. Rheumatology, 2021, 60, e171-e173.	1.9	6
44	Complex Allele with Additive Gain-of-Function STING1 Variants in a Patient with Cavitating Lung Lesions and Aspergillosis. Journal of Clinical Immunology, 2022, 42, 1156-1159.	3.8	4
45	Mendelian disorders of immunity related to an upregulation of type I interferon. , 2020, , 751-772.		2
46	COPA syndrome restricted to life-threatening alveolar hemorrhages: clinical, pathological, molecular and biological characterization. , $2018, , .$		1
47	SAT0514â€Mosaic Tetrasomy 9P: A Mendelian Condition Associated with Pediatric-Onset Overlap Myositis. Annals of the Rheumatic Diseases, 2015, 74, 846.2-846.	0.9	O
48	Mosaic tetrasomy 9p: a mendelian interferonopathy associated with pediatric-onset overlap myositis. Pediatric Rheumatology, 2015, 13, P140.	2.1	0
49	011 Monogenic type I interferonopathies: from diagnosis to treatment. Journal of Investigative Dermatology, 2016, 136, S162.	0.7	O
50	A child with severe juvenile dermatomyositis treated with ruxolitinib. Journal of Financial Econometrics, 0 , , .	1.5	0
51	OP0107â€HETEROZYGOUS MUTATIONS IN COPA ARE ASSOCIATED WITH ENHANCED TYPE I INTERFERON SIGNALLING. , 2019, , .		O
52	Syndrome COPA, quoi de neuf cinq ans après�. Revue Du Rhumatisme (Edition Francaise), 2021, 88, 183-189.	0.0	0
53	CD4 T-Cell Response to Pandemic H1N1 Specific Vaccine After HSCT In Pediatric Recipients. Blood, 2010, 116, 2338-2338.	1.4	O
54	Reiterated Therapeutic Drug Monitoring (TDM) Dosing to Significantly Improve the Control of Exposure to IV Busulfan in Infants and Older Children Undergoing Hematopoietic Stem-Cell Transplantation (HSCT). Blood, 2015, 126, 4326-4326.	1.4	0