Richard M Kostrzewa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3735553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tardive Dyskinesia: Outcome of Antipsychotic Treatment and Brain Damage?. , 2022, , 1-12.		0
2	Neonatal 6-hydroxydopamine lesioning of rats and dopaminergic neurotoxicity: proposed animal model of Parkinson's disease. Journal of Neural Transmission, 2022, 129, 445-461.	1.4	4
3	6-Hydroxydopa: A Precursor-Neurotoxin with Relative Selectivity for Noradrenergic Neurons. , 2021, , 1-12.		0
4	p-Chloroamphetamine-Enhanced Neostriatal Dopamine Exocytosis in Rats Neonatally Co-lesioned with 6-OHDA and 5,7-DHT: Relevance to Parkinson's Disease. Neurotoxicity Research, 2020, 37, 543-552.	1.3	3
5	Dopamine D ₂ Receptor Supersensitivity as a Spectrum of Neurotoxicity and Status in Psychiatric Disorders. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 519-526.	1.3	14
6	BMAA and Neurodegenerative Illness. Neurotoxicity Research, 2018, 33, 178-183.	1.3	39
7	Perinatal Treatments with the Dopamine D2-Receptor Agonist Quinpirole Produces Permanent D2-Receptor Supersensitization: a Model of Schizophrenia. Neurochemical Research, 2016, 41, 183-192.	1.6	18
8	Inhibition of connexin43 improves functional recovery after ischemic brain injury in neonatal rats. Glia, 2015, 63, 1553-1567.	2.5	77
9	Lifelong Rodent Model of Tardive Dyskinesia—Persistence After Antipsychotic Drug Withdrawal. Current Topics in Behavioral Neurosciences, 2015, 29, 353-362.	0.8	9
10	Perinatal Lesioning and Lifelong Effects of the Noradrenergic Neurotoxin 6-Hydroxydopa. Current Topics in Behavioral Neurosciences, 2015, 29, 43-50.	0.8	3
11	Exercise and Nutritional Benefits in PD: Rodent Models and Clinical Settings. Current Topics in Behavioral Neurosciences, 2015, 29, 333-351.	0.8	6
12	Neuroteratology and Animal Modeling of Brain Disorders. Current Topics in Behavioral Neurosciences, 2015, 29, 1-40.	0.8	6
13	Neurotoxin Mechanisms and Processes Relevant to Parkinson's Disease: An Update. Neurotoxicity Research, 2015, 27, 328-354.	1.3	60
14	Perinatal Manganese Exposure and Hydroxyl Radical Formation in Rat Brain. Neurotoxicity Research, 2015, 27, 1-14.	1.3	14
15	Botulinum neurotoxin: Progress in negating its neurotoxicity; and in extending its therapeutic utility via molecular engineering. MiniReview. Peptides, 2015, 72, 80-87.	1.2	5
16	Perinatal 6-Hydroxydopamine to Produce a Lifelong Model of Severe Parkinson's Disease. Current Topics in Behavioral Neurosciences, 2015, 29, 313-332.	0.8	14
17	Perinatal 6-Hydroxydopamine Modeling of ADHD. Current Topics in Behavioral Neurosciences, 2015, 29, 279-293.	0.8	10
18	Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. International Journal of Neuropsychopharmacology, 2014, 17, 1569-1578.	1.0	79

#	Article	IF	CITATIONS
19	Ontogenetic manganese exposure with perinatal 6-OHDA lesioning alters behavioral responses of rats to dopamine D1 and D2 agonist treatments. Environmental Toxicology and Pharmacology, 2014, 37, 28-36.	2.0	3
20	Tardive Dyskinesia: Outcome of Antipsychotic Treatment and Brain Damage?. , 2014, , 2315-2326.		1
21	Survey of Selective Neurotoxins. , 2014, , 3-67.		4
22	Stereotypic Progressions in Psychotic Behavior. , 2013, , 161-170.		0
23	Schizophrenia and Substance Abuse Comorbidity: Nicotine Addiction and the Neonatal Quinpirole Model. Developmental Neuroscience, 2012, 34, 140-151.	1.0	35
24	Neonatal 6-Hydroxydopamine Lesioning Enhances Quinpirole-Induced Vertical Jumping in Rats that were Quinpirole Primed During Postnatal Ontogeny. Neurotoxicity Research, 2012, 21, 231-235.	1.3	12
25	Stereotypic Progressions in Psychotic Behavior. , 2012, , 143-152.		1
26	Ontogenetic Exposure of Rats to Pre- and Post-Natal Manganese Enhances Behavioral Impairments Produced by Perinatal 6-Hydroxydopamine. Neurotoxicity Research, 2011, 19, 536-543.	1.3	11
27	Staging Neurodegenerative Disorders: Structural, Regional, Biomarker, and Functional Progressions. Neurotoxicity Research, 2011, 19, 211-234.	1.3	25
28	Stereotypic Progressions in Psychotic Behavior. Neurotoxicity Research, 2011, 19, 243-252.	1.3	13
29	Modeling Tardive Dyskinesia: Predictive 5-HT2C Receptor Antagonist Treatment. , 2011, , 383-392.		0
30	Acute l-DOPA Effect on Hydroxyl Radical- and DOPAC-Levels in Striatal Microdialysates of Parkinsonian Rats. Neurotoxicity Research, 2010, 17, 299-304.	1.3	21
31	Neonatal co-lesion by DSP-4 and 5,7-DHT produces adulthood behavioral sensitization to dopamine D2 receptor agonists. Pharmacological Reports, 2009, 61, 311-318.	1.5	17
32	Evolution of Neurotoxins: From Research Modalities to Clinical Realities. Current Protocols in Neuroscience, 2009, 46, Unit 1.18.	2.6	8
33	Histamine H3 receptor ligands modulate L-dopa-evoked behavioral responses and L-dopa-derived extracellular dopamine in dopamine-denervated rat striatum. Neurotoxicity Research, 2008, 13, 231-240.	1.3	29
34	Focusing on symptoms rather than diagnoses in brain dysfunction: Conscious and nonconscious expression in impulsiveness and decision-making. Neurotoxicity Research, 2008, 14, 1-20.	1.3	28
35	Schizopsychotic symptom-profiles and biomarkers: Beacons in diagnostic labyrinths. Neurotoxicity Research, 2008, 14, 79-96.	1.3	5
36	Dopamine receptor supersensitivity: Development, mechanisms, presentation, and clinical applicability. Neurotoxicity Research, 2008, 14, 121-128.	1.3	42

#	Article	IF	CITATIONS
37	Affective status in relation to impulsive, motor and motivational symptoms: Personality, development and physical exercise. Neurotoxicity Research, 2008, 14, 151-168.	1.3	27
38	Effect of prenatal lead exposure on nigrostriatal neurotransmission and hydroxyl radical formation in rat neostriatum: Dopaminergic–nitrergic interaction. Toxicology, 2008, 246, 83-89.	2.0	15
39	Cortical dopaminergic neurotransmission in rats intoxicated with lead during pregnancy. Nitric oxide and hydroxyl radicals formation involvement. Neurotoxicology and Teratology, 2008, 30, 428-432.	1.2	9
40	Amphetamine and mCPP Effects on Dopamine and Serotonin Striatalin vivo Microdialysates in an Animal Model of Hyperactivity. Neurotoxicity Research, 2007, 11, 131-144.	1.3	23
41	Modeling tardive dyskinesia: Predictive 5-HT2C receptor antagonist treatment. Neurotoxicity Research, 2007, 11, 41-50.	1.3	45
42	The blood-brain barrier for catecholamines — Revisited. Neurotoxicity Research, 2007, 11, 261-271.	1.3	35
43	Comorbidity implications in brain disease: Neuronal substrates of symptom profiles. Neurotoxicity Research, 2007, 12, 1-15.	1.3	11
44	Genetic variation and shared biological susceptibility underlying comorbidity in neuropsychiatry. Neurotoxicity Research, 2007, 12, 29-42.	1.3	21
45	Treatment consideration and manifest complexity in comorbid neuropsychiatric disorders. Neurotoxicity Research, 2007, 12, 43-60.	1.3	23
46	Botulinum neurotoxin: Evolution from poison, to research tool - onto medicinal therapeutic and future pharmaceutical panacea. Neurotoxicity Research, 2007, 12, 275-290.	1.3	31
47	Maternal Lead Exposure Produces Long-Term Enhancement of Dopaminergic Reactivity in Rat Offspring. Neurochemical Research, 2007, 32, 1791-1798.	1.6	39
48	The effects of adulthood olanzapine treatment on cognitive performance and neurotrophic factor content in male and female rats neonatally treated with quinpirole. European Journal of Neuroscience, 2006, 24, 2075-2083.	1.2	27
49	Neurotoxins and neurotoxicity mechanisms. an overview. Neurotoxicity Research, 2006, 10, 263-285.	1.3	40
50	Histamine H3 receptor agonist- and antagonist-evoked vacuous chewing movements in 6-OHDA-lesioned rats occurs in an absence of change in microdialysate dopamine levels. European Journal of Pharmacology, 2006, 552, 46-54.	1.7	10
51	Prenatal cadmium and ethanol increase amphetamine-evoked dopamine release in rat striatum. Neurotoxicology and Teratology, 2006, 28, 563-572.	1.2	19
52	DSP-4 prevents dopamine receptor priming by quinpirole. Pharmacology Biochemistry and Behavior, 2006, 84, 3-7.	1.3	23
53	Adulthood nicotine treatment alleviates behavioural impairments in rats neonatally treated with quinpirole: possible roles of acetylcholine function and neurotrophic factor expression. European Journal of Neuroscience, 2004, 19, 1634-1642.	1.2	26
54	Gene-environment interplay in neurogenesis and neurodegeneration. Neurotoxicity Research, 2004, 6, 415-434.	1.3	11

RICHARD M KOSTRZEWA

#	Article	IF	CITATIONS
55	Dopamine D2 agonist priming in intact and dopamine-lesioned rats. Neurotoxicity Research, 2004, 6, 457-462.	1.3	32
56	Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity. Neurotoxicity Research, 2004, 6, 317-325.	1.3	32
57	Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotoxicity Research, 2004, 6, 615-630.	1.3	86
58	Ontogenetic quinpirole treatments fail to prime for D2 agonist-enhancement of locomotor activity in 6-hydroxydopamine-lesioned rats. Neurotoxicity Research, 2003, 5, 329-338.	1.3	30
59	Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. A review. Neurotoxicity Research, 2003, 5, 375-383.	1.3	61
60	Dopamine receptor supersensitivity: An outcome and index of neurotoxicity. Neurotoxicity Research, 2003, 5, 111-117.	1.3	30
61	Ontogenetic quinpirole treatments produce spatial memory deficits and enhance skilled reaching in adult rats. Pharmacology Biochemistry and Behavior, 2002, 72, 591-600.	1.3	30
62	Neonatal 6-Hydroxydopamine and Adult SKF 38393 Treatments Alter Dopamine D1 Receptor mRNA Levels: Absence of Other Neurochemical Associations with the Enhanced Behavioral Responses of Lesioned Rats. Journal of Neurochemistry, 2002, 63, 1282-1290.	2.1	46
63	Neurodevelopmental liabilities of substance abuse. Neurotoxicity Research, 2002, 4, 267-279.	1.3	4
64	Neurodevelopmental liabilities in schizophrenia and affective disorders. Neurotoxicity Research, 2002, 4, 397-408.	1.3	15
65	Program and abstracts of the First Int'l Meeting: Mechanisms for Neurodegenerative Disorders—Alzheimer, Amyotropic Lateral Sclerosis (ALS) and Parkinson's Disease. Neurotoxicity Research, 2002, 4, 165-182.	1.3	0
66	Neurotoxicological and neuroprotective elements in Parkinson's disease. Neurotoxicity Research, 2002, 4, 83-86.	1.3	9
67	Neurotoxicity and substance abuse: Further fuel for regulatory dilemma. Neurotoxicity Research, 2001, 3, 1-6.	1.3	1
68	7-OH-DPAT, unlike quinpirole, does not prime a yawning response in rats. Pharmacology Biochemistry and Behavior, 2000, 67, 11-15.	1.3	21
69	Neuroprotective and neurorestorative strategies for neuronal injury. Neurotoxicity Research, 2000, 2, 71-84.	1.3	14
70	Review on apoptosis vs. necrosis of substantia nigrapars compacta in parkinson's disease. Neurotoxicity Research, 2000, 2, 239-250.	1.3	25
71	Nicotine blocks quinpirole-induced behavior in rats: psychiatric implications. Psychopharmacology, 1999, 145, 433-441.	1.5	33
72	Selective neurotoxins, chemical tools to probe the mind: The first Thirty years and beyond. Neurotoxicity Research, 1999, 1, 3-25.	1.3	16

#	Article	IF	CITATIONS
73	Serotonin Neural Adaptations to Ontogenetic Loss of Dopamine Neurons in Rat Brain. Journal of Neurochemistry, 1998, 70, 889-898.	2.1	82
74	6-Hydroxydopa, a Catecholamine Neurotoxin and Endogenous Excitotoxin at Non-NMDA Receptors. , 1998, , 109-129.		6
75	Dopamine receptor supersensitivity. Neuroscience and Biobehavioral Reviews, 1995, 19, 1-17.	2.9	152
76	Enhanced quinpirole response in rats lesioned neonatally with 5,7-dihydroxytryptamine. Pharmacology Biochemistry and Behavior, 1995, 50, 649-653.	1.3	30
77	In Vivo and in Vitro Studies on the Neurotoxic Potential of 6-Hydroxydopamine Analogs. Journal of Medicinal Chemistry, 1995, 38, 4087-4097.	2.9	13
78	Persistence of long-lasting serotonin depletion by p-chloroamphetamine in rat brain after 6-hydroxydopamine lesioning of dopamine neurons. Biochemical Pharmacology, 1995, 50, 1305-1307.	2.0	8
79	Enhanced oral activity response to A77636 in neonatal 6-hydroxydopamine-lesioned rats. European Journal of Pharmacology, 1994, 253, 163-166.	1.7	10
80	Persistent oral dyskinesias in haloperidol-withdrawn neonatal 6-hydroxydopamine-lesioned rats. European Journal of Pharmacology, 1994, 271, 433-437.	1.7	8
81	Proposed animal model of attention deficit hyperactivity disorder. Brain Research Bulletin, 1994, 34, 161-167.	1.4	77
82	Low-dose quinpirole ontogenically sensitizes to quinpirole-induced yawning in rats. Pharmacology Biochemistry and Behavior, 1993, 44, 487-489.	1.3	60
83	Enhanced pilocarpine-induced oral activity responses in neonatal 6-OHDA treated rats. Pharmacology Biochemistry and Behavior, 1993, 45, 737-740.	1.3	18
84	Ontogenetic quinpirole treatment induces vertical jumping activity in rats. European Journal of Pharmacology, 1993, 239, 183-187.	1.7	29
85	Ontogenetic SKF 38393 treatments sensitize dopamine D1 receptors in neonatal 6-OHDA-lesioned rats. Developmental Brain Research, 1993, 76, 59-65.	2.1	32
86	Age-dependence of a 6-hydroxydopamine lesion on SKF 38393- and m-chlorophenylpiperazine-induced oral activity responses of rats. Developmental Brain Research, 1993, 76, 87-93.	2.1	41
87	Dose-related effects of a neonatal 6-OHDA lesion on SKF 38393- and m-chlorophenylpiperazine-induced oral activity responses of rats. Developmental Brain Research, 1993, 76, 233-238.	2.1	49
88	Supersensitized oral responses to a serotonin agonist in neonatal 6-OHDA-treated rats. Pharmacology Biochemistry and Behavior, 1992, 41, 621-623.	1.3	67
89	Is dopamine-agonist induced yawning behavior a D3 mediated event?. Life Sciences, 1991, 48, PL129.	2.0	21
90	Ontogenetic homologous sensitization to the antinociceptive action of quinpirole in rats. European Journal of Pharmacology, 1991, 209, 157-161.	1.7	27

RICHARD M KOSTRZEWA

#	Article	IF	CITATIONS
91	Ontogenic homologous supersensitization of dopamino D1 receptors. European Journal of Pharmacology, 1991, 203, 115-120.	1.7	23
92	Supersensitized D1 receptors mediate enhanced oral activity after neonatal 6-OHDA. Pharmacology Biochemistry and Behavior, 1991, 39, 677-682.	1.3	70
93	Ontogenic homologous supersensitization of quinpirole-induced yawning in rats. Pharmacology Biochemistry and Behavior, 1991, 39, 517-519.	1.3	63
94	Potentiation of spiperone-induced oral activity in rats after neonatal 6-hydroxydopamine. Pharmacology Biochemistry and Behavior, 1991, 38, 215-218.	1.3	50
95	Destruction of cells in the midportion of the locus coeruleus by a dorsal bundle lesion in neonatal rats. Brain Research, 1988, 442, 321-328.	1.1	11
96	Reorganization of noradrenergic neuronal systems following neonatal chemical and surgical injury. Progress in Brain Research, 1988, 73, 405-423.	0.9	19
97	Alterations in noradrenergic innervation of the brain following dorsal bundle lesions in neonatal rats. Brain Research Bulletin, 1986, 16, 47-54.	1.4	12
98	Noradrenergic fiber sprouting in the cerebellum. Brain Research Bulletin, 1982, 9, 509-517.	1.4	10
99	Opiate-enhanced toxicity and noradrenergic sprouting in rats treated with 6-hydroxydopa. European Journal of Pharmacology, 1981, 71, 365-373.	1.7	15
100	Effects of neonatal 6-hydroxydopa on behavior in female rats. Pharmacology Biochemistry and Behavior, 1980, 13, 863-868.	1.3	7
101	Enhancement of sprouting and putative regeneration of central noradrenergic fibers by morphine. Brain Research Bulletin, 1980, 5, 421-424.	1.4	13
102	Effects of 6-hydroxydopamine and 6-hydroxydopa on development of behavior. Pharmacology Biochemistry and Behavior, 1979, 11, 309-312.	1.3	17
103	Loss of nerve cell bodies in caudal locus coeruleus following treatment of neonates with 6-hydroxydopa. Neuroscience Letters, 1979, 13, 331-336.	1.0	20
104	Studies on the mechanism of sprouting of noradrenergic terminals in rat and mouse cerebellum after neonatal 6-hydroxydopa. Brain Research Bulletin, 1978, 3, 525-531.	1.4	19
105	Sprouting of noradrenergic terminals in rat cerebellum following neonatal treatment with 6-hydroxydopa. Brain Research, 1977, 124, 385-391.	1.1	45
106	Behavioral and biochemical effects of neonatal treatment of rats with 6-hydroxydopa. Pharmacology Biochemistry and Behavior, 1976, 4, 601-607.	1.3	33
107	Effect of 6-hydroxydopa on catecholamine-containing neurons in brains of newborn rats. Brain Research, 1974, 69, 174-181.	1.1	46
108	Acute effects of 6-hydroxydopa on central monoaminergic neurons. European Journal of Pharmacology, 1973, 21, 70-80.	1.7	47

#	Article	IF	CITATIONS
109	Selective action of 6-hydroxydopa on noradrenergic terminals: Mapping of preterminal axons of the brain. Life Sciences, 1971, 10, 1329-1342.	2.0	111