Amaia Lujambio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3735322/publications.pdf

Version: 2024-02-01

159525 85498 8,047 87 30 71 citations h-index g-index papers 91 91 91 13210 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel microenvironment-based classification of intrahepatic cholangiocarcinoma with therapeutic implications. Gut, 2023, 72, 736-748.	6.1	42
2	Imaging for better responses to immunotherapy in hepatocellular carcinoma. Hepatology, 2023, 77, 6-9.	3.6	1
3	The portrait of liver cancer is shaped by mitochondrial genetics. Cell Reports, 2022, 38, 110254.	2.9	10
4	TRAF6 functions as a tumor suppressor in myeloid malignancies by directly targeting MYC oncogenic activity. Cell Stem Cell, 2022, 29, 298-314.e9.	5.2	23
5	Proteomic Analyses Identify Therapeutic Targets in Hepatocellular Carcinoma. Frontiers in Oncology, 2022, 12, 814120.	1.3	3
6	Activation of the Unfolded Protein Response (UPR) Is Associated with Cholangiocellular Injury, Fibrosis and Carcinogenesis in an Experimental Model of Fibropolycystic Liver Disease. Cancers, 2022, 14, 78.	1.7	3
7	$ ilde{A} ilde{Y} ext{-catenin}$ is a novel target in YAP-driven cholangiocarcinoma. Gastroenterology, 2022, , .	0.6	0
8	Metformin keeps CD8+ T cells active and moving in NASH-HCC immunotherapy. Journal of Hepatology, 2022, 77, 593-595.	1.8	5
9	Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nature Medicine, 2022, 28, 1599-1611.	15.2	185
10	Liver metastases inhibit immunotherapy efficacy. Nature Medicine, 2021, 27, 25-27.	15.2	20
11	NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature, 2021, 592, 450-456.	13.7	649
12	Turning up our understanding of liver cancer by a notch. Journal of Hepatology, 2021, 74, 502-504.	1.8	3
13	Tumor-Intrinsic Mechanisms Regulating Immune Exclusion in Liver Cancers. Frontiers in Immunology, 2021, 12, 642958.	2.2	12
14	The Endless Sources of Hepatocellular Carcinoma Heterogeneity. Cancers, 2021, 13, 2621.	1.7	15
15	Diverse immune response of DNA damage repair-deficient tumors. Cell Reports Medicine, 2021, 2, 100276.	3.3	12
16	BRAFV600E-induced senescence drives Langerhans cell histiocytosis pathophysiology. Nature Medicine, 2021, 27, 851-861.	15.2	38
17	Transcriptomic characterization of cancer-testis antigens identifies MAGEA3 as a driver of tumor progression in hepatocellular carcinoma. PLoS Genetics, 2021, 17, e1009589.	1.5	15
18	Manipulating and tracking single hepatocyte behavior during mouse liver regeneration by performing hydrodynamic tail vein injection. STAR Protocols, 2021, 2, 100440.	0.5	3

#	Article	IF	Citations
19	Dissecting Early Relapse in Liver Cancer, One Cell at a Time. Hepatology, 2021, 74, 2891-2893.	3.6	O
20	Nuclear factor erythroid 2–related factor 2 and βâ€Catenin Coactivation in Hepatocellular Cancer: Biological and Therapeutic Implications. Hepatology, 2021, 74, 741-759.	3.6	32
21	An epigenetic switch regulates the ontogeny of AXL-positive/EGFR-TKi-resistant cells by modulating miR-335 expression. ELife, 2021, 10, .	2.8	7
22	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of hepatocellular carcinoma., 2021, 9, e002794.		43
23	A Novel Long Noncoding RNA Finetunes the DNA Damage Response in Hepatocellular Carcinoma. Cancer Research, 2021, 81, 4899-4900.	0.4	2
24	Decoding the rapy resistance in liver tumours: a giant leap. Nature Reviews Gastroenter ology and Hepatology, 2021, , .	8.2	0
25	Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses against Hepatocellular Carcinoma. Cancers, 2020, 12, 3397.	1.7	17
26	Cooperation Between Distinct Cancer Driver Genes Underlies Intertumor Heterogeneity in Hepatocellular Carcinoma. Gastroenterology, 2020, 159, 2203-2220.e14.	0.6	47
27	Novel patient-derived preclinical models of liver cancer. Journal of Hepatology, 2020, 72, 239-249.	1.8	41
28	Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell, 2020, 37, 584-598.e11.	7.7	96
29	Mouse Models of Oncoimmunology in Hepatocellular Carcinoma. Clinical Cancer Research, 2020, 26, 5276-5286.	3.2	13
30	Abstract LB-329: Pancancer proteomic investigation identifies overexpressed kinases as novel cancer dependent targets., 2020,,.		0
31	Abstract NG06: CHD1-loss confers AR targeted therapy resistance via promoting cancer heterogeneity and lineage plasticity. , 2020, , .		0
32	Experimental Models for Preclinical Research in Hepatocellular Carcinoma. Molecular and Translational Medicine, 2019, , 333-358.	0.4	7
33	Epigenetic Compensation Promotes Liver Regeneration. Developmental Cell, 2019, 50, 43-56.e6.	3.1	49
34	Phenotype-Based Screens with Conformation-Specific Inhibitors Reveal p38 Gamma and Delta as Targets for HCC Polypharmacology. Molecular Cancer Therapeutics, 2019, 18, 1506-1519.	1.9	16
35	β-Catenin Activation Promotes Immune Escape and Resistance to Anti–PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discovery, 2019, 9, 1124-1141.	7.7	498
36	Hepatocellular carcinoma: killing one bird with two stones. Gut, 2019, 68, 1543-1544.	6.1	3

#	Article	IF	Citations
37	Iron overload and liver cancer. Journal of Experimental Medicine, 2019, 216, 723-724.	4.2	12
38	Functional screening to identify senescence regulators in cancer. Current Opinion in Genetics and Development, 2019, 54, 17-24.	1.5	5
39	Genetic Modification of CD8+ T Cells to Express EGFR: Potential Application for Adoptive T Cell Therapies. Frontiers in Immunology, 2019, 10, 2990.	2.2	14
40	The more (mutations), the better. Science Translational Medicine, 2019, 11, .	5.8	0
41	Innate Immune Signaling Suppresses Acute Leukemia By Modifying MYC Oncogenic Activity. Blood, 2019, 134, 727-727.	0.6	18
42	Cell type-specific pharmacological kinase inhibition for cancer chemoprevention. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 317-325.	1.7	12
43	Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell, 2018, 174, 1200-1215.e20.	13.5	96
44	Precision medicine in a dish. Science Translational Medicine, 2018, 10, .	5.8	1
45	A new hope for <i>KRAS</i> mutant cancers. Science Translational Medicine, 2018, 10, .	5.8	1
46	A (synthetic) lethal weapon for cancer. Science Translational Medicine, 2018, 10, .	5.8	0
47	Unsplicing senescence. Science Translational Medicine, 2018, 10, .	5.8	0
48	One hepatocyte, two malignant fates. Science Translational Medicine, 2018, 10, .	5.8	0
49	The two immune sides of obesity. Science Translational Medicine, 2018, 10, .	5.8	0
50	Histone Acetyltransferase Activity of MOF Is Required for <i>MLL-AF9</i> Leukemogenesis. Cancer Research, 2017, 77, 1753-1762.	0.4	38
51	USP39 Deubiquitinase Is Essential for KRAS Oncogene-driven Cancer. Journal of Biological Chemistry, 2017, 292, 4164-4175.	1.6	37
52	Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-Î ² Pathway. Cell Reports, 2017, 18, 2480-2493.	2.9	135
53	Therapeutic editing of hepatocyte genome in vivo. Journal of Hepatology, 2017, 67, 818-828.	1.8	17
54	Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut, 2017, 66, 1286-1296.	6.1	198

#	Article	ΙF	Citations
55	DNA sensing in senescence. Nature Cell Biology, 2017, 19, 1008-1009.	4.6	18
56	Strategies for HCC target discovery. Aging, 2017, 9, 1088-1089.	1.4	5
57	Role of Tumor Microenvironment in Hepatocellular Carcinoma Resistance. Resistance To Targeted Anti-cancer Therapeutics, 2017, , 45-64.	0.1	1
58	Uncovering the role of USP54 in cancer. Oncotarget, 2017, 8, 10765-10766.	0.8	5
59	Abstract 4393: Integrative molecular analysis of gene expression and methylation reveals 116 putative key regulator genes of human hepatocarcinogenesis. , 2017, , .		0
60	Abstract 1225: A unified model of RAF inhibitor action determines inhibitor activity in BRAF-dependent tumors. , 2017, , .		0
61	IGF2 Is Up-regulated by Epigenetic Mechanisms in Hepatocellular Carcinomas and Is an Actionable Oncogene Product in Experimental Models. Gastroenterology, 2016, 151, 1192-1205.	0.6	103
62	An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. Cancer Cell, 2016, 30, 485-498.	7.7	130
63	To clear, or not to clear (senescent cells)? That is the question. Inside the Cell, 2016, 1, 87-95.	0.4	2
64	To clear, or not to clear (senescent cells)? That is the question. BioEssays, 2016, 38, S56-64.	1.2	88
65	A combinatorial strategy for treating KRAS-mutant lung cancer. Nature, 2016, 534, 647-651.	13.7	337
66	Abstract 2694: Histone acetyltransferase activity of MOF is required for MLL-AF9 leukemogenesis. , 2016, , .		0
67	A Targetable GATA2-IGF2 Axis Confers Aggressiveness in Lethal Prostate Cancer. Cancer Cell, 2015, 27, 223-239.	7.7	128
68	The usual SASPects of liver cancer. Aging, 2015, 7, 348-349.	1.4	4
69	CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma. Genes and Development, 2014, 28, 1800-1814.	2.7	167
70	Splicing regulator SLU7 is essential for maintaining liver homeostasis. Journal of Clinical Investigation, 2014, 124, 2909-2920.	3.9	55
71	Abstract 2935: RNAi screen identifies therapeutic targets in hepatocellular carcinoma. , 2014, , .		0
72	Suppression of EZH2 Accelerates MYC-Driven Lymphomagenesis By Inhibition of Apoptosis. Blood, 2014, 124, 3009-3009.	0.6	1

#	Article	IF	Citations
73	Non-Cell-Autonomous Tumor Suppression by p53. Cell, 2013, 153, 449-460.	13.5	603
74	Epigenetic disruption of cadherinâ€11 in human cancer metastasis. Journal of Pathology, 2012, 228, 230-240.	2.1	60
75	The microcosmos of cancer. Nature, 2012, 482, 347-355.	13.7	993
76	Epigenetic Activation of SOX11 in Lymphoid Neoplasms by Histone Modifications. PLoS ONE, 2011, 6, e21382.	1.1	38
77	Bivalent histone modifications in stem cells poise miRNA loci for CpG island hypermethylation in human cancer. Epigenetics, 2011, 6, 1344-1353.	1.3	16
78	CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene, 2010, 29, 6390-6401.	2.6	183
79	The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Research, 2009, 19, 438-451.	2.4	218
80	How epigenetics can explain human metastasis: A new role for microRNAs. Cell Cycle, 2009, 8, 377-382.	1.3	143
81	CpG Island Hypermethylation, miRNAs, and Human Cancer., 2008,, 367-384.		0
82	A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13556-13561.	3.3	990
83	CpG Island Hypermethylation of Tumor Suppressor microRNAs in Human Cancer. Cell Cycle, 2007, 6, 1454-1458.	1.3	170
84	Genetic Unmasking of an Epigenetically Silenced microRNA in Human Cancer Cells. Cancer Research, 2007, 67, 1424-1429.	0.4	883
85	Molecular Analysis of a Multistep Lung Cancer Model Induced by Chronic Inflammation Reveals Epigenetic Regulation of p16, Activation of the DNA Damage Response Pathway. Neoplasia, 2007, 9, 840-IN12.	2.3	86
86	CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle, 2007, 6, 1455-9.	1.3	98
87	Metastasis Genes: Epigenetics. , 0, , 85-95.		0