List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/373517/publications.pdf Version: 2024-02-01

RENILE LL

#	Article	IF	CITATIONS
1	Co-porphyrin/Ru-pincer complex coupled polymer with Z-scheme molecular junctions and dual single-atom sites for visible light-responsive CO2 reduction. Chemical Engineering Journal, 2022, 431, 133357.	6.6	16
2	Efficient CO ₂ reduction over a Ru-pincer complex/TiO ₂ hybrid photocatalyst <i>via</i> direct Z-scheme mechanism. Catalysis Science and Technology, 2022, 12, 1637-1650.	2.1	8
3	Monoclinic WO3 nanosheets-carbon nanotubes nanocomposite based electrochemical sensor for sensitive detection of bisphenol A. Journal of Electroanalytical Chemistry, 2022, 915, 116355.	1.9	11
4	An effective Z-scheme hybrid photocatalyst based on zinc porphyrin derivative and anatase titanium dioxide microsphere for carbon dioxide reduction. Materials Today Sustainability, 2022, 19, 100164.	1.9	2
5	Fundamentals and Recent Progress of Photocatalytic Nitrogenâ€Fixation Reaction over Semiconductors. Solar Rrl, 2021, 5, 2000487.	3.1	90
6	In-situ growth of ultrafine ZnO on g-C3N4 layer for highly active and selective CO2 photoreduction to CH4 under visible light. Materials Research Bulletin, 2021, 137, 111177.	2.7	25
7	Porphyrin Conjugated Polymer with Periodic Type IIâ€Like Heterojunctions and Singleâ€Atom Catalytic Sites for Broadbandâ€Responsive Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2009819.	7.8	44
8	Porphyrin-Based Metal–Organic Frameworks for Efficient Photocatalytic H ₂ Production under Visible-Light Irradiation. Inorganic Chemistry, 2021, 60, 3988-3995.	1.9	49
9	In situ grown TiN/N-TiO2 composite for enhanced photocatalytic H2 evolution activity. Frontiers in Energy, 2021, 15, 721-731.	1.2	11
10	Central site regulation of cobalt porphyrin conjugated polymer to give highly active and selective CO2 reduction to CO in aqueous solution. Applied Catalysis B: Environmental, 2021, 291, 120128.	10.8	31
11	Ruâ€Pincer Complexâ€Bridged Cuâ€Porphyrin Polymer for Robust (Photo)Electrocatalytic H ₂ Evolution via Singleâ€Atom Active Sites. Advanced Functional Materials, 2021, 31, 2107290.	7.8	30
12	Electronâ€Rich Pincer Ligandâ€Coupled Cobalt Porphyrin Polymer with Singleâ€Atom Sites for Efficient (Photo)Electrocatalytic CO ₂ Reduction at Ultralow Overpotential. Small, 2021, 17, e2102957.	5.2	22
13	Insight into the significantly enhanced photocatalytic CO2 reduction performance of Pt/MnO dual cocatalysts on sea-urchin-like anatase TiO2 microspheres. Chemical Engineering Journal, 2021, 425, 131627.	6.6	22
14	Porphyrin Conjugated Polymer Grafted onto BiVO ₄ Nanosheets for Efficient Z‧cheme Overall Water Splitting via Cascade Charge Transfer and Singleâ€Atom Catalytic Sites. Advanced Energy Materials, 2021, 11, 2003575.	10.2	70
15	Z-scheme photocatalyst based on porphyrin derivative decorated few-layer BiVO4 nanosheets for efficient visible-light-driven overall water splitting. Nano Research, 2021, 14, 1294-1304.	5.8	20
16	Brookite TiO ₂ Nanoparticles Decorated with Ag/MnO _{<i>x</i>} Dual Cocatalysts for Remarkably Boosted Photocatalytic Performance of the CO ₂ Reduction Reaction. Langmuir, 2021, 37, 12487-12500.	1.6	14
17	Facile Preparation Process of NiCoP–NiCoSe ₂ Nano-Bilayer Films for Oxygen Evolution Reaction with High Efficiency and Long Duration. ACS Sustainable Chemistry and Engineering, 2020, 8, 1240-1251.	3.2	29
18	Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature, 2020, 586, 549-554.	13.7	554

#	Article	IF	CITATIONS
19	Few-layer BiVO4 nanosheets decorated with SrTiO3: Rh nanoparticles for highly efficient visible-light-driven overall water splitting. Applied Catalysis B: Environmental, 2020, 279, 119377.	10.8	66
20	Asymmetric zinc porphyrin derivatives bearing three pseudo-pyrimidine meso-position substituents and their photosensitization for H2 evolution. New Journal of Chemistry, 2020, 44, 11237-11247.	1.4	5
21	Layered WS2/WO3 Z-scheme photocatalyst constructed via an in situ sulfurization of hydrous WO3 nanoplates for efficient H2 generation. Applied Surface Science, 2020, 529, 147013.	3.1	37
22	Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	15
23	Direct Z-Scheme 2D/2D Photocatalyst Based on Ultrathin g-C3N4 and WO3 Nanosheets for Efficient Visible-Light-Driven H2 Generation. ACS Applied Materials & Interfaces, 2019, 11, 27913-27923.	4.0	161
24	Porphyrin-Based Conjugated Polymers as Intrinsic Semiconducting Photocatalysts for Robust H ₂ Generation under Visible Light. ACS Applied Energy Materials, 2019, 2, 5665-5676.	2.5	39
25	Construction of Ag ₂ S/WO ₃ Direct Z-Scheme Photocatalyst for Enhanced Charge Separation Efficiency and H ₂ Generation Activity. Industrial & Engineering Chemistry Research, 2019, 58, 14802-14813.	1.8	23
26	One-pot hydrothermal synthesis of MoS ₂ -modified Mn _{0.5} Cd _{0.5} S solid solution for boosting H ₂ production activity under visible light. Catalysis Science and Technology, 2019, 9, 762-771.	2.1	33
27	SrCO3-modified brookite/anatase TiO2 heterophase junctions with enhanced activity and selectivity of CO2 photoreduction to CH4. Applied Surface Science, 2019, 476, 937-947.	3.1	27
28	Synthesis of an A2BC-type asymmetric zinc phthalocyanine derivative for efficient visible/near-infrared-driven H2 evolution on g-C3N4. Chemical Engineering Journal, 2019, 373, 651-659.	6.6	29
29	Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping. Applied Catalysis B: Environmental, 2019, 254, 351-359.	10.8	60
30	A novel BODIPY-based MOF photocatalyst for efficient visible-light-driven hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 10439-10445.	5.2	58
31	Fabrication of an Feâ€Ðoped SrTiO ₃ Photocatalyst with Enhanced Dinitrogen Photofixation Performance. European Journal of Inorganic Chemistry, 2019, 2019, 2182-2192.	1.0	20
32	Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nature Communications, 2019, 10, 676.	5.8	278
33	Effects of the central metal ions on the photosensitization of metalloporphyrins over carbon nitride for visible-light-responsive H2 production. Applied Surface Science, 2019, 464, 255-261.	3.1	29
34	One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production. Applied Catalysis B: Environmental, 2019, 241, 130-140.	10.8	140
35	Highly Efficient Photocatalytic Hydrogen Evolution by ReS ₂ via a Twoâ€Electron Catalytic Reaction. Advanced Materials, 2018, 30, e1707123.	11.1	90
36	MoS2-MoO3-x hybrid cocatalyst for effectively enhanced H2 production photoactivity of AgIn5S8 nano-octahedrons. Applied Catalysis B: Environmental, 2018, 228, 39-46.	10.8	55

#	Article	IF	CITATIONS
37	Lowâ€Temperature Processed Nanostructured Rutile TiO ₂ Array Films for Perovskite Solar Cells With High Efficiency and Stability. Solar Rrl, 2018, 2, 1700164.	3.1	18
38	Controllable Syntheses of Hierarchical WO ₃ Films Consisting of Orientation-Ordered Nanorod Bundles and Their Photocatalytic Properties. Crystal Growth and Design, 2018, 18, 794-801.	1.4	19
39	Airâ€stable Ruthenium(II)â€NNN Pincer Complexes for the Efficient Coupling of Aromatic Diamines and Alcohols to 1 <i>H</i> â€benzo[<i>d</i>]imidazoles with the Liberation of H ₂ . ChemCatChem, 2018, 10, 1607-1613.	1.8	45
40	Ti ₂ Nb _{2x} O _{4+5x} anode materials for lithium-ion batteries: a comprehensive review. Journal of Materials Chemistry A, 2018, 6, 9799-9815.	5.2	101
41	Controllable Preparation of Rutile TiO ₂ Nanorod Array for Enhanced Photovoltaic Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1649-1657.	2.5	26
42	TiO ₂ modified with a Ru(<scp>ii</scp>)–N′NN′ 8-hydroxyquinolyl complex for efficient gaseous photoreduction of CO ₂ . Catalysis Science and Technology, 2018, 8, 2098-2103.	2.1	3
43	Improved photovoltaic performance of perovskite solar cells based on three-dimensional rutile TiO ₂ nanodendrite array film. Nanoscale, 2018, 10, 20836-20843.	2.8	7
44	Controllable Fabrication of Regular Hexagon-Shaped SnS ₂ Nanoplates and Their Enhanced Visible-Light-Driven H ₂ Production Activity. ACS Applied Nano Materials, 2018, 1, 2923-2933.	2.4	43
45	Mg ₂ Nb ₃₄ O ₈₇ Porous Microspheres for Use in High-Energy, Safe, Fast-Charging, and Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23711-23720.	4.0	58
46	Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H ₂ evolution. Journal of Materials Chemistry A, 2018, 6, 15668-15674.	5.2	155
47	Ruthenium(II) Pincer Complex Bearing N′NN′―and ONOâ€Type Ligands as a Titania Sensitizer for Efficient and Stable Visibleâ€Lightâ€Driven Hydrogen Production. ChemPhotoChem, 2018, 2, 765-772.	1.5	9
48	Photosensitization of zinc phthalocyanine bearing 15-crown-5 ether moieties on carbon nitride for H2 production: Effect of co-existing alkali metal ions. Journal of Power Sources, 2018, 396, 57-63.	4.0	21
49	New Ru(<scp>ii</scp>) N′NN′-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO ₂ or bicarbonates to formate salts. New Journal of Chemistry, 2017, 41, 3055-3060.	1.4	25
50	Preparation of Single-Crystalline AgIn ₅ S ₈ Octahedrons with Exposed {111} Facets and Its Visible-Light-Responsive Photocatalytic H ₂ Production Activity. ACS Applied Materials & Interfaces, 2017, 9, 17013-17023.	4.0	43
51	Ni(<scp>ii</scp>)–N′NN′ pincer complexes catalyzed dehydrogenation of primary alcohols to carboxylic acids and H ₂ accompanied by alcohol etherification. Catalysis Science and Technology, 2017, 7, 2506-2511.	2.1	38
52	Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H ₂ production activity. Dalton Transactions, 2017, 46, 8219-8228.	1.6	36
53	An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells. Journal of Power Sources, 2017, 359, 303-310.	4.0	38
54	Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Research, 2017, 10, 2193-2209.	5.8	71

#	Article	IF	CITATIONS
55	Ru(II) complexes bearing 2,6-bis(benzimidazole-2-yl)pyridine ligands: A new class of catalysts for efficient dehydrogenation of primary alcohols to carboxylic acids and H2 in the alcohol/CsOH system. Journal of Organometallic Chemistry, 2017, 830, 11-18.	0.8	57
56	Oxidant-free synthesis of benzimidazoles from alcohols and aromatic diamines catalysed by new Ru(<scp>ii</scp>)-PNS(O) pincer complexes. Dalton Transactions, 2017, 46, 15012-15022.	1.6	28
57	Oneâ€Pot Synthesis of Cuâ€Nanoclusterâ€Decorated Brookite TiO ₂ <i>Quasi</i> â€Nanocubes for Enhanced Activity and Selectivity of CO ₂ Photoreduction to CH ₄ . ChemPhysChem, 2017, 18, 3230-3239.	1.0	28
58	Asymmetric Zinc Porphyrin Derivative-Sensitized Graphitic Carbon Nitride for Efficient Visible-Light-Driven H ₂ Production. ACS Sustainable Chemistry and Engineering, 2017, 5, 7549-7556.	3.2	66
59	Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Applied Catalysis B: Environmental, 2017, 219, 693-704.	10.8	617
60	Growth of a sea urchin-like rutile TiO ₂ hierarchical microsphere film on Ti foil for a quasi-solid-state dye-sensitized solar cell. Nanoscale, 2017, 9, 18498-18506.	2.8	11
61	Carbon nitride nanodots decorated brookite TiO2 quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO2 reduction. Applied Catalysis B: Environmental, 2017, 203, 910-916.	10.8	88
62	Synthesis and characterization of an A2BC type phthalocyanine and its visible-light-responsive photocatalytic H2 production performance on graphitic carbon nitride. Dalton Transactions, 2016, 45, 14071-14079.	1.6	26
63	Recent Advances in Heterogeneous Photocatalytic CO ₂ Conversion to Solar Fuels. ACS Catalysis, 2016, 6, 7485-7527.	5.5	1,035
64	Bilayer film electrode of brookite TiO2 particles with different morphology to improve the performance of pure brookite-based dye-sensitized solar cells. Journal of Power Sources, 2016, 327, 77-85.	4.0	16
65	Effects of the symmetry and carboxyl anchoring group of zinc phthalocyanine derivatives on g-C ₃ N ₄ for photosensitized H ₂ production. RSC Advances, 2016, 6, 77366-77374.	1.7	22
66	Low cost and solution-processable zinc phthalocyanine as alternative hole transport material for perovskite solar cells. RSC Advances, 2016, 6, 107723-107731.	1.7	21
67	Preparation of brookite TiO ₂ nanoparticles with small sizes and the improved photovoltaic performance of brookite-based dye-sensitized solar cells. Nanoscale, 2016, 8, 18771-18781.	2.8	29
68	Preparation of a Single-Walled Carbon Nanotube/Cd0.8Zn0.2S Nanocomposite and Its Enhanced Photocatalytic Hydrogen Production Activity. European Journal of Inorganic Chemistry, 2016, 2016, 3204-3212.	1.0	2
69	New Ni(II) complexes based on N′NN′ pincer ligands: syntheses, structures and B–F cleavage of BF ₄ ^{â^'} promoted by a di-cationic Ni(II) center. Journal of Coordination Chemistry, 2016, 69, 2353-2363.	0.8	3
70	Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2016, 4, 2365-2402.	5.2	368
71	New anthracene-based organic dyes: the flexible position of the anthracene moiety bearing isolation groups in the conjugated bridge and the adjustable cell performance. Organic Chemistry Frontiers, 2016, 3, 233-242.	2.3	10
72	Synthesis of asymmetric zinc phthalocyanine with bulky diphenylthiophenol substituents and its photovoltaic performance for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 248-256.	2.0	14

#	Article	IF	CITATIONS
73	Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells. Frontiers of Optoelectronics, 2016, 9, 60-70.	1.9	6
74	Ag-loading on brookite TiO2 quasi nanocubes with exposed {2 1 0} and {0 0 1} facets: Activity and selectivity of CO2 photoreduction to CO/CH4. Applied Catalysis B: Environmental, 2016, 180, 130-138.	10.8	128
75	Synthesis of zinc phthalocyanine with large steric hindrance and its photovoltaic performance for dye-sensitized solar cells. Dalton Transactions, 2015, 44, 5867-5874.	1.6	17
76	Visible/Near-Infrared-Light-Induced H ₂ Production over g-C ₃ N ₄ Co-sensitized by Organic Dye and Zinc Phthalocyanine Derivative. ACS Catalysis, 2015, 5, 504-510.	5.5	203
77	Preparation of brookite titania quasi nanocubes and their application in dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 7453-7462.	5.2	46
78	Robust Wide Visible-Light-Responsive Photoactivity for H ₂ Production over a Polymer/Polymer Heterojunction Photocatalyst: The Significance of Sacrificial Reagent. ACS Sustainable Chemistry and Engineering, 2015, 3, 1501-1509.	3.2	119
79	Preparation of Ni@C–Cd _{0.8} Zn _{0.2} S nanocomposites with highly efficient and stable photocatalytic hydrogen production activity. Physical Chemistry Chemical Physics, 2015, 17, 10944-10952.	1.3	18
80	Investigation of benzo(1,2-b:4,5-b′)dithiophene as a spacer in organic dyes for high efficient dye-sensitized solar cell. Organic Electronics, 2015, 25, 245-253.	1.4	11
81	Asymmetric zinc porphyrin-sensitized nanosized TiO ₂ for efficient visible-light-driven CO ₂ photoreduction to CO/CH ₄ . Chemical Communications, 2015, 51, 12443-12446.	2.2	52
82	Theoretical investigation of self-assembled donor–acceptor phthalocyanine complexes and their application in dye-sensitized solar cells. Journal of Molecular Graphics and Modelling, 2015, 59, 100-106.	1.3	5
83	Composite electrode of TiO ₂ particles with different crystal phases and morphology to significantly improve the performance of dye-sensitized solar cells. RSC Advances, 2015, 5, 32536-32545.	1.7	21
84	A new route for visible/near-infrared-light-driven H2 production over titania: Co-sensitization of surface charge transfer complex and zinc phthalocyanine. Journal of Power Sources, 2015, 298, 30-37.	4.0	35
85	Enhanced photocatalytic activity of g-C ₃ N ₄ for selective CO ₂ reduction to CH ₃ OH via facile coupling of ZnO: a direct Z-scheme mechanism. Journal of Materials Chemistry A, 2015, 3, 19936-19947.	5.2	812
86	Effect of carboxyl anchoring groups in asymmetric zinc phthalocyanine with large steric hindrance on the dye-sensitized solar cell performance. Materials Chemistry and Physics, 2015, 163, 348-354.	2.0	17
87	Sea urchin-like TiO2 microspheres as scattering layer of nanosized TiO2 film-based dye-sensitized solar cell with enhanced conversion efficiency. Materials Chemistry and Physics, 2015, 164, 238-245.	2.0	7
88	Asymmetric zinc phthalocyanines with large steric hindrance as efficient red/near-IR responsive sensitizer for dye-sensitized solar cells. Dyes and Pigments, 2015, 114, 231-238.	2.0	19
89	Multiwalled Carbon Nanotube-TiO ₂ Nanocomposite for Visible-Light-Induced Photocatalytic Hydrogen Evolution. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	14
90	The effect of Mg doping on the dielectric and tunable properties of Pb0.3Sr0.7TiO3 thin films prepared by sol–gel method. Applied Physics A: Materials Science and Processing, 2014, 114, 777-783.	1.1	12

#	Article	IF	CITATIONS
91	Synthesis of size controllable and thermally stable rice-like brookite titania and its application as a scattering layer for nano-sized titania film-based dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 1886-1896.	5.2	37
92	Pt-loading reverses the photocatalytic activity order of anatase TiO2 {001} and {010} facets for photoreduction of CO2 to CH4. Applied Catalysis B: Environmental, 2014, 144, 855-862.	10.8	138
93	Highly Asymmetric Phthalocyanine as a Sensitizer of Graphitic Carbon Nitride for Extremely Efficient Photocatalytic H ₂ Production under Near-Infrared Light. ACS Catalysis, 2014, 4, 162-170.	5.5	270
94	Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency. Solar Energy, 2014, 101, 150-159.	2.9	70
95	Asymmetry and electronic directionality: a means of improving the red/near-IR-light-responsive photoactivity of phthalocyanine-sensitized carbon nitride. Catalysis Science and Technology, 2014, 4, 3251.	2.1	32
96	Syntheses of asymmetric zinc phthalocyanines as sensitizer of Pt-loaded graphitic carbon nitride for efficient visible/near-IR-light-driven H2 production. Physical Chemistry Chemical Physics, 2014, 16, 4106.	1.3	71
97	Effects of benzo-annelation of asymmetric phthalocyanine on the photovoltaic performance of dye-sensitized solar cells. Dalton Transactions, 2014, 43, 8421-8430.	1.6	30
98	Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. Journal of Power Sources, 2014, 260, 233-242.	4.0	44
99	Efficient Panchromatic Light Harvesting with Co-Sensitization of Zinc Phthalocyanine and Bithiophene-Based Organic Dye for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2014, 2, 718-725.	3.2	67
100	Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science and Technology, 2013, 3, 2481.	2.1	250
101	Synthesis and electrochemical properties of FeSbO4 nanorods. Wuhan University Journal of Natural Sciences, 2013, 18, 185-190.	0.2	1
102	Synthesis of C ₆₀ -decorated SWCNTs (C ₆₀ -d-CNTs) and its TiO ₂ -based nanocomposite with enhanced photocatalytic activity for hydrogen production. Dalton Transactions, 2013, 42, 3402-3409.	1.6	101
103	Highly efficient visible/near-IR-light-driven photocatalytic H2 production over asymmetric phthalocyanine-sensitized TiO2. RSC Advances, 2013, 3, 14363.	1.7	50
104	Low-temperature preparation of AgIn5S8/TiO2 heterojunction nanocomposite with efficient visible-light-driven hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 15965-15975.	3.8	24
105	Synthesis of anatase TiO2 nanocrystals with {101}, {001} or {010} single facets of 90% level exposure and liquid-phase photocatalytic reduction and oxidation activity orders. Journal of Materials Chemistry A, 2013, 1, 10532.	5.2	147
106	A simple preparation method for quasi-solid-state flexible dye-sensitized solar cells by using sea urchin-like anatase TiO2 microspheres. Journal of Power Sources, 2013, 222, 38-44.	4.0	68
107	Preparation of AgIn ₅ S ₈ /TiO ₂ Heterojunction Nanocomposite and Its Enhanced Photocatalytic H ₂ Production Property under Visible Light. ACS Catalysis, 2013, 3, 170-177.	5.5	175
108	Synthesis of multicomponent sulfide Ag ₂ ZnSnS ₄ as an efficient photocatalyst for H ₂ 22/sub>production under visible light irradiation. RSC Advances, 2013, 3, 253-258.	1.7	45

#	Article	IF	CITATIONS
109	Low Dielectric Loss and Good Dielectric Thermal Stability of <i>x</i> <scp><scp>Nd</scp></scp> (<scp>Zn</scp> _{1/2} <scp><scp>Ti</scp></scp> Thin Films Fabricated by Sol–Gel Method. Journal of the American Ceramic Society, 2013, 96, 820-824.	sub 1.b /2 </td <td>sub9)<scp><s< td=""></s<></scp></td>	sub9) <scp><s< td=""></s<></scp>
110	Highly asymmetric phthalocyanine-sensitized solar cells: The effect of coadsorbent and adsorption temperature of phthalocyanine. Electrochimica Acta, 2013, 111, 344-350.	2.6	16
111	Hierarchical PbMoO4microspheres: hydrothermal synthesis, formation mechanism and photocatalytic properties. CrystEngComm, 2013, 15, 1146-1152.	1.3	24
112	Optimization of plastic crystal ionic liquid electrolyte for solid-state dye-sensitized solar cell. Electrochimica Acta, 2013, 94, 1-6.	2.6	16
113	A new class of organic dyes containing β-substituted 2, 2′-bithiophenene unit as a π-linker for dye-sensitized solar cells: Structural modification for understanding relationship of structure and photovoltaic performances. Journal of Power Sources, 2013, 234, 23-30.	4.0	34
114	Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Catalysis Science and Technology, 2013, 3, 1253.	2.1	441
115	Single-crystal β-MnO2 hollow bipyramids: synthesis and application in lithium ion batteries. RSC Advances, 2013, 3, 5141.	1.7	14
116	An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells. Electrochimica Acta, 2013, 107, 231-237.	2.6	15
117	Carbon encapsulation strategy of Ni co-catalyst: Highly efficient and stable Ni@C/CdS nanocomposite photocatalyst for hydrogen production under visible light. Journal of Catalysis, 2013, 303, 156-163.	3.1	62
118	Recent Development of Dye-Sensitized Solar Cells Based on Flexible Substrates. Science of Advanced Materials, 2013, 5, 1596-1626.	0.1	22
119	Effects of Metal Oxide Modifications on Photoelectrochemical Properties of Mesoporous TiO2 Nanoparticles Electrodes for Dye-Sensitized Solar Cells. Chinese Journal of Chemical Physics, 2012, 25, 609-616.	0.6	1
120	High performance organic sensitizers based on 11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 18830.	6.7	86
121	Highly Asymmetric Tribenzonaphthoâ€Condensed Porphyrazinatozinc Complex: An Efficient Nearâ€Infrared Sensitizer for Dyeâ€Sensitized Solar Cells. ChemPlusChem, 2012, 77, 1022-1027.	1.3	31
122	Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catalysis Communications, 2012, 28, 38-41.	1.6	127
123	Self-organized film of ultra-fine TiO2 nanotubes and its application to dye-sensitized solar cells on a flexible Ti-foil substrate. Journal of Materials Chemistry, 2012, 22, 4681.	6.7	27
124	Walnut-like In2S3 microspheres: ionic liquid-assisted solvothermal synthesis, characterization and formation mechanism. Nanoscale, 2012, 4, 2372.	2.8	30
125	New organic dyes containing tert-Butyl-capped N-Arylcarbazole moiety for Dye-sensitized solar cells. RSC Advances, 2012, 2, 7081.	1.7	28
126	Enhanced Photocatalytic Hydrogen Production over Graphene Oxide–Cadmium Sulfide Nanocomposite under Visible Light Irradiation. Journal of Physical Chemistry C, 2012, 116, 22720-22726.	1.5	195

#	Article	IF	CITATIONS
127	Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation. Journal of Solid State Chemistry, 2012, 194, 250-256.	1.4	72
128	Visibleâ€Lightâ€Induced Photocatalytic Hydrogen Production over Binuclear Ru ^{II} –Bipyridyl Dyeâ€Sensitized TiO ₂ without Noble Metal Loading. Chemistry - A European Journal, 2012, 18, 12103-12111.	1.7	87
129	Graphitic carbon nitride (g-C3N4)–Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Physical Chemistry Chemical Physics, 2012, 14, 16745.	1.3	479
130	Bin(Tu)xCl3n: a novel sensitizer and its enhancement of BiOCl nanosheets' photocatalytic activity. Journal of Materials Chemistry, 2012, 22, 8354.	6.7	68
131	Increasing visible-light absorption for photocatalysis with black BiOCl. Physical Chemistry Chemical Physics, 2012, 14, 82-85.	1.3	383
132	Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X = Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonance and Z-Scheme Bridge. ACS Catalysis, 2012, 2, 1677-1683.	5.5	768
133	Low-cost, quasi-solid-state and TCO-free highly bendable dye-sensitized cells on paper substrate. Journal of Materials Chemistry, 2012, 22, 16121.	6.7	23
134	Preparation of multiwalled carbon nanotubes/Cd 0.8 Zn 0.2 S nanocomposite and its photocatalytic hydrogen production under visible-light. International Journal of Hydrogen Energy, 2012, 37, 1375-1384.	3.8	58
135	Triphenylamine-based organic dyes containing a 1,2,3-triazole bridge for dye-sensitized solar cells via a â€ ⁻ Click' reaction. Dyes and Pigments, 2012, 94, 28-33.	2.0	81
136	Linear perylenetetracarboxylic monoanhydried derivatives for the sensitization of dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 239, 28-36.	2.0	3
137	Iodine-free quasi solid-state dye-sensitized solar cells based on ionic liquid and alkali salt. Journal of Materials Chemistry, 2011, 21, 16448.	6.7	41
138	Hydrothermal fabrication of PbMoO4 microcrystals with exposed (001) facets and its enhanced photocatalytic properties. CrystEngComm, 2011, 13, 2785.	1.3	36
139	Template-Free Hydrothermal Synthesis of ZnIn ₂ S ₄ Floriated Microsphere as an Efficient Photocatalyst for H ₂ Production under Visible-Light Irradiation. Journal of Physical Chemistry C, 2011, 115, 6149-6155.	1.5	184
140	Hydrothermal Preparation of Multiwalled Carbon Nanotubes (MWCNTs)/CdS Nanocomposite and Its Efficient Photocatalytic Hydrogen Production under Visible Light Irradiation. Energy & Fuels, 2011, 25, 2203-2210.	2.5	131
141	Application of TiO ₂ Fusiform Nanorods for Dye-Sensitized Solar Cells with Significantly Improved Efficiency. Journal of Physical Chemistry C, 2011, 115, 17213-17219.	1.5	98
142	One-pot synthesis of reduced graphene oxide–cadmium sulfide nanocomposite and its photocatalytic hydrogen production. Physical Chemistry Chemical Physics, 2011, 13, 21496.	1.3	88
143	Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light. Journal of Materials Chemistry, 2011, 21, 14587.	6.7	105
144	Synthesis of highly symmetrical BiOI single-crystal nanosheets and their {001} facet-dependent photoactivity. Journal of Materials Chemistry, 2011, 21, 12479.	6.7	223

#	Article	IF	CITATIONS
145	A novel preparation of small TiO2 nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature. Nanoscale, 2011, 3, 3900.	2.8	24
146	Construction of inorganic nanoparticles by micro-nano-porous structure of cellulose matrix. Cellulose, 2011, 18, 945-956.	2.4	44
147	Effects of tetrabutoxytitanium on photoelectrochemical properties of plastic-based TiO2 film electrodes for flexible dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 2939-2944.	4.0	34
148	Enhancement of photocatalytic degradation activity of poly(vinyl chloride)â€TiO ₂ nanocomposite film with polyoxometalate. Journal of Applied Polymer Science, 2011, 120, 2048-2053.	1.3	18
149	Enhancement of photocatalytic degradation of poly(vinyl chloride) with perchlorinated iron (II) phthalocyanine modified nanoâ€TiO ₂ . Journal of Applied Polymer Science, 2011, 122, 1823-1828.	1.3	20
150	A novel Cul-based iodine-free gel electrolyte for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 5554-5560.	2.6	15
151	Effects of rare earth ion modifications on the photoelectrochemical properties of ZnO-based dye-sensitized solar cells. Renewable Energy, 2011, 36, 3386-3393.	4.3	48
152	Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. Journal of Materials Chemistry, 2010, 20, 3665.	6.7	252
153	Enhanced photodegradation efficiency of polyethyleneâ€īiO ₂ nanocomposite film with oxidized polyethylene wax. Journal of Applied Polymer Science, 2010, 118, 378-384.	1.3	42
154	Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 5239-5244.	2.6	58
155	Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Solar Energy, 2010, 84, 844-853.	2.9	112
156	4,5-Bis(4-methoxyphenoxy)phthalonitrile. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2527-o2527.	0.2	2
157	1,3-Dimethyl-5,6,7,8-tetrahydro-4H-cyclohepta[c]thiophene-4,8-dione. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3231-o3231.	0.2	1
158	Benzo-fused low symmetry metal-free tetraazaporphyrin and phthalocyanine analogs: synthesis, spectroscopy, electrochemistry, and density functional theory calculations. Journal of Porphyrins and Phthalocyanines, 2010, 14, 421-437.	0.4	9
159	Enhanced Energy Conversion Efficiency of Mg ²⁺ -Modified Mesoporous TiO ₂ Nanoparticles Electrodes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 22346-22351.	1.5	52
160	Bis[1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyaninato] rare earth double-decker complexes: synthesis, spectroscopy, and molecular structure. Dalton Transactions, 2010, 39, 1321-1327.	1.6	26
161	Fabrication of alumina nanofibers by precipitation reaction combined with heterogeneous azeotropic distillation process. Materials Research Bulletin, 2009, 44, 160-167.	2.7	15
162	New Pyrroleâ€Based Organic Dyes for Dyeâ€5ensitized Solar Cells: Convenient Syntheses and High Efficiency. Chemistry - A European Journal, 2009, 15, 9664-9668.	1.7	59

#	Article	IF	CITATIONS
163	Nonperipherally Octa(butyloxy)â€Substituted Phthalocyanine Derivatives with Good Crystallinity: Effects of Metal–Ligand Coordination on the Molecular Structure, Internal Structure, and Dimensions of Selfâ€Assembled Nanostructures. Chemistry - A European Journal, 2009, 15, 13241-13252.	1.7	66
164	New Indole-Based Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2009, 113, 14588-14595.	1.2	72
165	Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO ₂ nanoparticles under visible light irradiation. Nanotechnology, 2009, 20, 125603.	1.3	170
166	CdS/Regenerated Cellulose Nanocomposite Films for Highly Efficient Photocatalytic H ₂ Production under Visible Light Irradiation. Journal of Physical Chemistry C, 2009, 113, 16021-16026.	1.5	143
167	New Progress in Monomeric Phthalocyanine Chemistry: Synthesis, Crystal Structures and Properties. Structure and Bonding, 2009, , 121-160.	1.0	1
168	Cyclophanes of Perylene Tetracarboxylic Diimide with Different Substituents at Bay Positions. Chemistry - A European Journal, 2008, 14, 7000-7010.	1.7	71
169	Sandwichâ€Type Heteroleptic <i>opposite</i> â€{Diazaporphyrinato)cerium Complexes: Synthesis, Spectroscopy, Structure, and Electrochemistry. European Journal of Inorganic Chemistry, 2008, 2008, 5519-5523.	1.0	21
170	Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H2 evolution over TiO2 nanoparticles with mesostructures. Journal of Power Sources, 2008, 180, 498-505.	4.0	41
171	Effect of Annealing Temperature on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with Mesoporous TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 8486-8494.	1.5	169
172	H ₂ O-Involved Hydrogen Bonds in Pseudo-Double-Decker Supramolecular Structure of 1,8,15,22-Tetrasubstituted Phthalocyaninato Zinc Complex. Crystal Growth and Design, 2008, 8, 4454-4459.	1.4	15
173	Divalent Manganese Linked Tungstenâ^'Molybdenum Polyoxometalates:  Synthesis, Structure, and Magnetic Characteristics. Crystal Growth and Design, 2007, 7, 1699-1705.	1.4	18
174	Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. Inorganic Chemistry, 2007, 46, 11397-11404.	1.9	68
175	Di(alkoxy)- and Di(alkylthio)-Substituted Perylene-3,4;9,10-tetracarboxy Diimides with Tunable Electrochemical and Photophysical Properties. Journal of Organic Chemistry, 2007, 72, 2402-2410.	1.7	104
176	Effect of Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalocyaninato) Europium Triple-Decker Complexes. Langmuir, 2007, 23, 12549-12554.	1.6	64
177	Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor. Langmuir, 2007, 23, 5836-5842.	1.6	66
178	Synthesis, characterization of CdS/rectorite nanocomposites and its photocatalytic activity. Physics and Chemistry of Minerals, 2007, 34, 275-285.	0.3	21
179	Hydrothermal synthesis of flaky crystallized La2Ti2O7 for producing hydrogen from photocatalytic water splitting. Catalysis Letters, 2007, 113, 54-58.	1.4	65
180	Heteroleptic Bis(Phthalocyaninato) Europium(III) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. Inorganic Chemistry, 2006, 45, 3794-3802.	1.9	88

#	Article	IF	CITATIONS
181	Electron-Donating or -Withdrawing Nature of Substituents Revealed by the Electrochemistry of Metal-Free Phthalocyanines. Inorganic Chemistry, 2006, 45, 2327-2334.	1.9	169
182	The molecular, electronic structures and vibrational spectra of metal-free, N,N′-dideuterio and magnesium tetra-2,3-pyridino-porphyrazines: Density functional calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 467-480.	2.0	10
183	Controlling the Nature of Mixed (Phthalocyaninato)(porphyrinato) Rare-Earth(III) Double-Decker Complexes: The Effects of Nonperipheral Alkoxy Substitution of the Phthalocyanine Ligand. Chemistry - A European Journal, 2006, 12, 1475-1485.	1.7	90
184	Lanthanide(III) Double-Decker Complexes with Octaphenoxy- or Octathiophenoxyphthalocyaninato Ligands – Revealing the Electron-Withdrawing Nature of the Phenoxy and Thiophenoxy Groups in the Double-Decker Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 3703-3709.	1.0	42
185	Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Heteroleptic Tris(phthalocyaninato) Rare Earth Complexes. European Journal of Inorganic Chemistry, 2005, 2005, 2612-2618.	1.0	38
186	Electron-Donating Alkoxy-Group-Driven Synthesis of Heteroleptic Tris(phthalocyaninato) Lanthanide(III) Triple-Deckers with Symmetrical Molecular Structure. Chemistry - A European Journal, 2005, 11, 1425-1432.	1.7	83
187	Studies of "Pinwheel-Like―Bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato] Rare Earth(III) Double-Decker Complexes. Chemistry - A European Journal, 2005, 11, 7351-7357.	1.7	56
188	Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity. Journal of Physical Chemistry B, 2005, 109, 4947-4952.	1.2	359
189	Electrochemistry of homoleptic bis[3(4),12(13),21(22),30(31)-tetra(<i>tert</i> -butyl)-naphthalocyaninato] rare earth(III) complexes. Journal of Porphyrins and Phthalocyanines, 2005, 09, 40-46.	0.4	9
190	Heteroleptic Rare Earth Double-Decker Complexes with Naphthalocyaninato and Phthalocyaninato Ligands. General Synthesis, Spectroscopic, and Electrochemical Characteristics. Inorganic Chemistry, 2005, 44, 2114-2120.	1.9	35
191	Synthesis and Characterization of Mixed Phthalocyaninato andmeso-Tetrakis(4-chlorophenyl)porphyrinato Triple-Decker Complexesâ^' Revealing the Origin of Their Electronic Absorptions. European Journal of Inorganic Chemistry, 2004, 2004, 3806-3813.	1.0	45
192	Synthesis, Structure, and Spectroscopic and Electrochemical Properties of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes with aC4 Symmetry. Helvetica Chimica Acta, 2004, 87, 2581-2596.	1.0	44
193	Homoleptic Lanthanide Triple-Deckers of 5,15-Diazaporphyrin withD2hSymmetry. Inorganic Chemistry, 2004, 43, 8242-8244.	1.9	34
194	Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22-Tetrasubstituted) Tj ETQqC	0 0 rgBT /C	overlock 10 Ti
195	Synthesis, spectroscopic properties, and electrochemistry of heteroleptic rare earth double-decker complexes with phthalocyaninato and meso-tetrakis (4-chlorophenyl)porphyrinato ligands. New Journal of Chemistry, 2004, 28, 1116-1122.	1.4	57
196	Tuning the Valence of the Cerium Center in (Na)phthalocyaninato and Porphyrinato Cerium Double-Deckers by Changing the Nature of the Tetrapyrrole Ligands, Journal of the American Chemical	6.6	158

196Double-Deckers by Changing the Nature of the Petrapyrole Ligands. Journal of the American Chemical6.6158Society, 2003, 125, 12257-12267.Nanometer-sized titanium dioxide micro-column on-line preconcentration of La, Y, Yb, Eu, Dy and their
determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical1.6109197Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic
emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic1.514

#	Article	IF	CITATIONS
199	In-situ separation of chromium(III) and chromium(VI) and sequential ETV-ICP-AES determination using acetylacetone and PTFE as chemical modifiers. Fresenius' Journal of Analytical Chemistry, 2001, 370, 904-908.	1.5	12
200	In-situ Separation of a Matrix for the Direct Analysis of Zirconium Dioxide Powder by Electrothermal Vaporization ICP-AES with a Polytetrafluoroethylene Slurry Modifier Analytical Sciences, 2000, 16, 877-879.	0.8	4
201	Study of the adsorption behavior ¶of heavy metal ions on nanometer-size ¶titanium dioxide with ICP-AES. Fresenius' Journal of Analytical Chemistry, 2000, 368, 638-640.	1.5	69
202	Direct analysis of silicon carbide by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry using a slurry sampling technique. Analyst, The, 2000, 125, 2089-2093.	1.7	10
203	Direct determination of trace copper and chromium in silicon nitride by fluorinating electrothermal vaporization inductively coupled plasma atomic emission spectrometry with the slurry sampling technique. Fresenius' Journal of Analytical Chemistry, 1999, 364, 551-555.	1.5	12
204	Study on the direct analysis of solid powder biological samples using fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry with PTFE slurry modifier. Fresenius' Journal of Analytical Chemistry, 1999, 364, 556-559.	1.5	15
205	Separation/Preconcentration of Lanthanum and Europium by Micro-Column Packed with Immobilized 1-Phenyl-3-methyl-4-bonzoyl-5-pyrazone on Microcrystalline Naphthalene and Determination by Electrothermal Vaporization Inductively Coupled Plasma-Atomic Emission Spectrometry Analytical Sciences, 1999, 15, 737-741.	0.8	16
206	Direct ICP-AES Determination of Trace Impurities in Silicon Dioxide Using Fluorinating Electrothermal Vaporization with Slurry Sampling Analytical Sciences, 1997, 13, 595-599.	0.8	12
207	Solution-Processable Cu(II) Phthalocyanine Derivative as Dopant-Free Hole Transport Layer for Efficient and Low-Cost Rutile TiO ₂ Array-Based Perovskite Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	2