Andrew D Chantry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3735155/publications.pdf

Version: 2024-02-01

39 papers 1,173 citations

567281 15 h-index 34 g-index

42 all docs 42 docs citations

42 times ranked 1615 citing authors

#	Article	IF	CITATIONS
1	What Can Patient Narratives Reveal to Us About the Experience of a Diagnosis of Myeloma? A Qualitative Scoping Review. Journal of Patient Experience, 2022, 9, 237437352210791.	0.9	3
2	Multiple myelomaâ€"A painful disease of the bone marrow. Seminars in Cell and Developmental Biology, 2021, 112, 49-58.	5.0	10
3	Bone Pain in Multiple Myeloma (BPMM)—A Protocol for a Prospective, Longitudinal, Observational Study. Cancers, 2021, 13, 1596.	3.7	5
4	Assessment of droplet digital polymerase chain reaction for measuring ⟨i⟩BCRâ€ABL1⟨ i⟩ in chronic myeloid leukaemia in an international interlaboratory study. British Journal of Haematology, 2021, 194, 53-60.	2.5	10
5	Myeloma Bone Disease: The Osteoblast in the Spotlight. Journal of Clinical Medicine, 2021, 10, 3973.	2.4	7
6	Pre-clinical investigation of inhibition of the DNA damage response as a targetted therapy in myeloproliferative neoplasms shows synergism of ATR inhibitors with standard-of-care treatment , $2021,3,\ldots$		0
7	The Use of Oncolytic Viruses in the Treatment of Multiple Myeloma. Cancers, 2021, 13, 5687.	3.7	6
8	Tasquinimod Targets Immunosuppressive Myeloid Cells, Increases Osteogenesis and Has Direct Anti-Myeloma Effects By Inhibiting c-Myc Expression in Vitro and In Vivo. Blood, 2021, 138, 1594-1594.	1.4	1
9	ER stress arm XBP1s plays a pivotal role in proteasome inhibition-induced bone formation. Stem Cell Research and Therapy, 2020, 11, 516.	5.5	25
10	The E3 ligase HUWE1 inhibition as a therapeutic strategy to target MYC in multiple myeloma. Oncogene, 2020, 39, 5001-5014.	5.9	17
11	Unplanned admissions for patients with myeloma in the UK: Low frequency but high costs. Journal of Bone Oncology, 2019, 17, 100243.	2.4	15
12	$TGF\hat{I}^2$ Inhibition Stimulates Collagen Maturation to Enhance Bone Repair and Fracture Resistance in a Murine Myeloma Model. Journal of Bone and Mineral Research, 2019, 34, 2311-2326.	2.8	14
13	A university – Led initiative to promote voluntary non-remunerated blood donation in a developing country. Transfusion and Apheresis Science, 2019, 58, 674-679.	1.0	6
14	Mechanisms and treatment of bone pain in multiple myeloma. Current Opinion in Supportive and Palliative Care, 2019, 13, 408-416.	1.3	16
15	Assessment of plasma cell myeloma minimal residual disease testing by flow cytometry in an international interâ€laboratory study: Is it ready for primetime use?. Cytometry Part B - Clinical Cytometry, 2019, 96, 201-208.	1.5	15
16	Preventing and Repairing Myeloma Bone Disease by Combining Conventional Antiresorptive Treatment With a Bone Anabolic Agent in Murine Models. Journal of Bone and Mineral Research, 2019, 34, 783-796.	2.8	22
17	Mesenchymal lineage cells and their importance in B lymphocyte niches. Bone, 2019, 119, 42-56.	2.9	13
18	New agents in the Treatment of Myeloma Bone Disease. Calcified Tissue International, 2018, 102, 196-209.	3.1	37

#	Article	IF	Citations
19	ARQ-197, a small-molecule inhibitor of c-Met, reduces tumour burden and prevents myeloma-induced bone disease in vivo. PLoS ONE, 2018, 13, e0199517.	2.5	9
20	Elective Vs Non-Elective Hospital Admissions By Patients with Multiple Myeloma in England 2014 - 2018. Blood, 2018, 132, 4743-4743.	1.4	1
21	Comparison of the CELLEXâ,,¢ and UVARâ€XTSâ,,¢ closedâ€system extracorporeal photopheresis devices in the treatment of chronic graftâ€versusâ€host disease. Journal of Clinical Apheresis, 2017, 32, 462-473.	1.3	7
22	Low-dose methotrexate in myeloproliferative neoplasm models. Haematologica, 2017, 102, e336-e339.	3.5	9
23	The Pharmacological Profile of a Novel Highly Potent Bisphosphonate, OX14 (1-Fluoro-2-(Imidazo-[1,2-î±]Pyridin-3-yl)-Ethyl-Bisphosphonate). Journal of Bone and Mineral Research, 2017, 32, 1860-1869.	2.8	19
24	Guidelines for the use of imaging in the management of patients with myeloma. British Journal of Haematology, 2017, 178, 380-393.	2.5	101
25	Researching surviving cancer and sexuality using visual methods: a reflection on research rationale and negotiating ethical issues. Families, Relationships and Societies, 2015, 4, 483-492.	0.9	2
26	Time to redefine Myeloma. British Journal of Haematology, 2015, 171, 1-10.	2.5	18
27	Genetics in myeloma: genetic technologies and their application to screening approaches in myeloma. British Medical Bulletin, 2015, 113, 15-30.	6.9	16
28	NOD/SCID-GAMMA Mice Are an Ideal Strain to Assess the Efficacy of Therapeutic Agents Used in the Treatment of Myeloma Bone Disease. PLoS ONE, 2015, 10, e0119546.	2.5	36
29	Myeloma bone disease: pathogenesis, current treatments and future targets. British Medical Bulletin, 2014, 111, 117-138.	6.9	61
30	A Small Molecule Modulator of Prion Protein Increases Human Mesenchymal Stem Cell Lifespan, Ex Vivo Expansion, and Engraftment to Bone Marrow in NOD/SCID Mice. Stem Cells, 2012, 30, 1134-1143.	3.2	31
31	Targeting Tumour-Initiating Cells with TRAIL Based Combination Therapy Ensures Complete and Lasting Eradication of Multiple Myeloma Tumours In Vivo. PLoS ONE, 2012, 7, e35830.	2.5	13
32	Spontaneous splenic rupture: an unusual presentation of CML. BMJ Case Reports, 2011, 2011, bcr0220113879-bcr0220113879.	0.5	9
33	Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. Journal of Bone and Mineral Research, 2010, 25, 2633-2646.	2.8	129
34	Inhibiting Dickkopf-1 (Dkk1) Removes Suppression of Bone Formation and Prevents the Development of Osteolytic Bone Disease in Multiple Myeloma. Journal of Bone and Mineral Research, 2009, 24, 425-436.	2.8	230
35	Apomineâ,,¢, an inhibitor of HMG-CoA-reductase, promotes apoptosis of myeloma cells in vitro and is associated with a modulation of myeloma in vivo. International Journal of Cancer, 2007, 120, 1657-1663.	5.1	20
36	Long-Term Outcomes of Myeloablation and Autologous Transplantation of Relapsed Acute Myeloid Leukemia in Second Remission: A British Society of Blood and Marrow Transplantation Registry Study. Biology of Blood and Marrow Transplantation, 2006, 12, 1310-1317.	2.0	22

3

#	Article	IF	CITATIONS
37	Bortezomib reduces serum dickkopfâ€1 and receptor activator of nuclear factorâ€∢i>κ⟨/i>B ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. British Journal of Haematology, 2006, 135, 688-692.	2.5	217
38	Bortezomib Reduces Serum Dickkopf-1 and RANKL Concentrations and Normalizes Indices of Bone Remodeling in Patients with Relapsed Multiple Myeloma Blood, 2006, 108, 506-506.	1.4	1
39	Myeloma bone disease – pathogenesis of bone destruction and therapeutic strategies. , 0, , 96-109.		0