List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3734907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of the water sorption and barrier performances of potato starch nano-biocomposites based on halloysite nanotubes. Carbohydrate Polymers, 2022, 277, 118805.	5.1	7
2	Influence of the Macromolecular architecture on the properties of biobased polyurethane tissue adhesives. European Polymer Journal, 2022, 164, 110968.	2.6	6
3	Morphological Study of Bio-Based Polymers in the Consolidation of Waterlogged Wooden Objects. Materials, 2022, 15, 681.	1.3	4
4	Dihydrolevoglucosenone (Cyreneâ,,¢) as a versatile biobased solvent for lignin fractionation, processing, and chemistry. Green Chemistry, 2022, 24, 338-349.	4.6	18
5	Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Progress in Polymer Science, 2022, 127, 101515.	11.8	94
6	Synthesis, characterization, and antibacterial activities of novel starch derivatives against <i>E. coli</i> and <i>S.Âaureus</i> . Starch/Staerke, 2022, 74, .	1.1	1
7	Scalable single-step synthesis of lignin-based liquid polyols with ethylene carbonate for polyurethane foams. Materials Today Chemistry, 2022, 24, 100793.	1.7	16
8	Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications. Polymer Reviews, 2022, 62, 653-721.	5.3	6
9	Green Synthesis of Biobased Soft Foams by the Aza-Michael Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 8549-8558.	3.2	4
10	2,3-Butanediol as a Biobased Chain Extender for Thermoplastic Polyurethanes: Influence of Stereochemistry on Macromolecular Architectures and Properties. Macromolecules, 2022, 55, 5371-5381.	2.2	9
11	Isolation of Low Dispersity Fractions of Acetone Organosolv Lignins to Understand their Reactivity: Towards Aromatic Building Blocks for Polymers Synthesis. ChemSusChem, 2021, 14, 387-397.	3.6	16
12	Biobased polyurethanes for biomedical applications. Bioactive Materials, 2021, 6, 1083-1106.	8.6	191
13	Melt processing of nanocomposites of cellulose nanocrystals with biobased thermoplastic polyurethane. Journal of Applied Polymer Science, 2021, 138, 50343.	1.3	8
14	Click chemistry for the synthesis of biobased polymers and networks derived from vegetable oils. Green Chemistry, 2021, 23, 4296-4327.	4.6	50
15	Green Recycling Process for Polyurethane Foams by a Chemâ€Biotech Approach. ChemSusChem, 2021, 14, 4234-4241.	3.6	25
16	Aza-Michael Reaction as a Greener, Safer, and More Sustainable Approach to Biobased Polyurethane Thermosets. ACS Sustainable Chemistry and Engineering, 2021, 9, 4872-4884.	3.2	23
17	Synthesis and characterization of renewable polyurethane foams using different biobased polyols from olive oil. European Polymer Journal, 2021, 149, 110363.	2.6	31
18	Fabrication and properties of alginate-hydroxyapatite biocomposites as efficient biomaterials for bone regeneration. European Polymer Journal, 2021, 151, 110444.	2.6	15

#	Article	IF	CITATIONS
19	Green and controlled synthesis of short diol oligomers from polyhydroxyalkanoate to develop fully biobased thermoplastics. European Polymer Journal, 2021, 153, 110531.	2.6	16
20	Towards bio-upcycling of polyethylene terephthalate. Metabolic Engineering, 2021, 66, 167-178.	3.6	151
21	From Lab to Market: Current Strategies for the Production of Biobased Polyols. ACS Sustainable Chemistry and Engineering, 2021, 9, 10664-10677.	3.2	90
22	Structure-properties relationships of cellular materials from biobased polyurethane foams. Materials Science and Engineering Reports, 2021, 145, 100608.	14.8	112
23	Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes. Waste Management, 2021, 132, 23-30.	3.7	33
24	MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environmental Sciences Europe, 2021, 33, 99.	2.6	33
25	Lipase-catalyzed synthesis of furan-based aliphatic-aromatic biobased copolyesters: Impact of the solvent. European Polymer Journal, 2021, 159, 110717.	2.6	13
26	Characterization of the enzymatic degradation of polyurethanes. Methods in Enzymology, 2021, 648, 317-336.	0.4	7
27	Wood-polymer composites and nanocomposites: Building and reconstruction materials of the future. , 2021, , 617-632.		2
28	Oxazolidone formation: myth or fact? The case of biobased polyurethane foams from different epoxidized triglycerides. Polymer Chemistry, 2021, 12, 3004-3014.	1.9	2
29	Ferulic Acid as Building Block for the Lipase-Catalyzed Synthesis of Biobased Aromatic Polyesters. Polymers, 2021, 13, 3693.	2.0	7
30	Synthesis of Biobased and Hybrid Polyurethane Xerogels from Bacterial Polyester for Potential Biomedical Applications. Polymers, 2021, 13, 4256.	2.0	5
31	Evaluation of biological degradation of polyurethanes. Biotechnology Advances, 2020, 39, 107457.	6.0	164
32	Renewable Responsive Systems Based on Original Click and Polyurethane Cross‣inked Architectures with Advanced Properties. ChemSusChem, 2020, 13, 238-251.	3.6	18
33	Renewable and Responsive Cross-Linked Systems Based on Polyurethane Backbones from Clickable Biobased Bismaleimide Architecture. Macromolecules, 2020, 53, 5869-5880.	2.2	42
34	Biobased Polyurethanes. Proceedings (mdpi), 2020, 57, .	0.2	0
35	Biobased Polyurethane Foams Based on New Polyol Architectures from Microalgae Oil. ACS Sustainable Chemistry and Engineering, 2020, 8, 12187-12196.	3.2	41
36	Network Design to Control Polyimine Vitrimer Properties: Physical Versus Chemical Approach. Macromolecules, 2020, 53, 3796-3805.	2.2	111

#	Article	IF	CITATIONS
37	Morphology and properties of thermoplastic starch blended with biodegradable polyester and filled with halloysite nanoclay. Carbohydrate Polymers, 2020, 242, 116392.	5.1	41
38	Optimized Bioproduction of Itaconic and Fumaric Acids Based on Solid-State Fermentation of Lignocellulosic Biomass. Molecules, 2020, 25, 1070.	1.7	21
39	Synthesis and behavior of responsive biobased polyurethane networks cross-linked by click chemistry: Effect of the cross-linkers and backbone structures. European Polymer Journal, 2020, 135, 109840.	2.6	13
40	Dynamic network based on eugenol-derived epoxy as promising sustainable thermoset materials. European Polymer Journal, 2020, 135, 109860.	2.6	41
41	Mild and controlled lignin methylation with trimethyl phosphate: towards a precise control of lignin functionality. Green Chemistry, 2020, 22, 1671-1680.	4.6	22
42	Biological properties of novel polysuccinimide derivatives synthesized via quaternary ammonium grafting. European Polymer Journal, 2020, 131, 109705.	2.6	17
43	Plastic Biodegradation: Challenges and Opportunities. , 2019, , 333-361.		5
44	Synthesis and behavior of click cross-linked alginate hydrogels: Effect of cross-linker length and functionality. International Journal of Biological Macromolecules, 2019, 137, 612-619.	3.6	24
45	Production and characterization of two medium-chain-length polydroxyalkanoates by engineered strains of Yarrowia lipolytica. Microbial Cell Factories, 2019, 18, 99.	1.9	44
46	Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Materials Science and Engineering C, 2019, 104, 109893.	3.8	67
47	From the Synthesis of Biobased Cyclic Carbonate to Polyhydroxyurethanes: A Promising Route towards Renewable Nonâ€Isocyanate Polyurethanes. ChemSusChem, 2019, 12, 3410-3430.	3.6	179
48	EDCâ€Mediated Grafting of Quaternary Ammonium Salts onto Chitosan for Antibacterial and Thermal Properties Improvement. Macromolecular Chemistry and Physics, 2019, 220, 1800530.	1.1	12
49	A fully bio-based polyimine vitrimer derived from fructose. Green Chemistry, 2019, 21, 1596-1601.	4.6	197
50	New Insight on the Study of the Kinetic of Biobased Polyurethanes Synthesis Based on Oleo-Chemistry. Molecules, 2019, 24, 4332.	1.7	15
51	Enzymatic recycling of thermoplastic polyurethanes: Synergistic effect of an esterase and an amidase and recovery of building blocks. Waste Management, 2019, 85, 141-150.	3.7	108
52	Recent developments in the conservation of materials properties of historical wood. Progress in Materials Science, 2019, 102, 167-221.	16.0	72
53	Isolation and characterization of different promising fungi for biological waste management of polyurethanes. Microbial Biotechnology, 2019, 12, 544-555.	2.0	75
54	Calcium phosphates grown on bacterial cellulose template. Ceramics International, 2018, 44, 9433-9441.	2.3	23

#	Article	IF	CITATIONS
55	Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydrate Polymers, 2018, 190, 271-280.	5.1	109
56	Plastic Biodegradation: Challenges and Opportunities. , 2018, , 1-29.		33
57	Elaboration and Characterization of Advanced Biobased Polyurethane Foams Presenting Anisotropic Behavior. Macromolecular Materials and Engineering, 2018, 303, 1700501.	1.7	16
58	Novel Rigid Polyisocyanurate Foams from Synthesized Biobased Polyester Polyol with Enhanced Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 6577-6589.	3.2	22
59	Elaboration and Properties of Innovative Biobased PUIR Foams from Microalgae. Journal of Polymers and the Environment, 2018, 26, 254-262.	2.4	19
60	Original Macromolecular Architectures Based on poly(ε-caprolactone) and poly(ε-thiocaprolactone) Grafted onto Chitosan Backbone. International Journal of Molecular Sciences, 2018, 19, 3799.	1.8	8
61	Nanocomposites based on renewable thermoplastic polyurethane and chemically modified cellulose nanocrystals with improved mechanical properties. Journal of Applied Polymer Science, 2018, 135, 46736.	1.3	15
62	Preparation and Characterization of Thermoplastic Potato Starch/Halloysite Nano-Biocomposites: Effect of Plasticizer Nature and Nanoclay Content. Polymers, 2018, 10, 808.	2.0	53
63	Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters. Molecules, 2018, 23, 290.	1.7	9
64	Starch/graphene hydrogels via click chemistry with relevant electrical and antibacterial properties. Carbohydrate Polymers, 2018, 202, 372-381.	5.1	54
65	Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. ChemSusChem, 2018, 11, 3836-3870.	3.6	33
66	Clicking Biobased Polyphenols: A Sustainable Platform for Aromatic Polymeric Materials. ChemSusChem, 2018, 11, 2472-2491.	3.6	23
67	Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polymer Chemistry, 2018, 9, 4258-4287.	1.9	156
68	Functional Biocomposites Based on Plasticized Starch/halloysite Nanotubes for Drugâ€Release Applications. Starch/Staerke, 2018, 70, 1700358.	1.1	14
69	From D-sorbitol to five-membered bis(cyclo-carbonate) as a platform molecule for the synthesis of different original biobased chemicals and polymers. Scientific Reports, 2018, 8, 9134.	1.6	36
70	Enzymatic synthesis of poly(ε-caprolactone- co -ε-thiocaprolactone). European Polymer Journal, 2017, 87, 147-158.	2.6	31
71	Tailoring the Structure, Morphology, and Crystallization of Isodimorphic Poly(butylene) Tj ETQq1 1 0.784314 rgB History. Macromolecules, 2017, 50, 597- <u>608.</u>	T /Overloc 2.2	k 10 Tf 50 77
72	The study of the pseudo-polyrotaxane architecture as a route for mild surface functionalization by click chemistry of poly(lµ-caprolactone)-based electrospun fibers. Journal of Materials Chemistry B, 2017, 5, 2181-2189.	2.9	9

#	Article	IF	CITATIONS
73	Titanium-catalyzed transesterification as a route to the synthesis of fully biobased poly(3-hydroxybutyurate- co -butylene dicarboxylate) copolyesters, from their homopolyesters. European Polymer Journal, 2017, 90, 92-104.	2.6	9
74	Renewable biocomposites based on cellulose fibers and dimer fatty acid polyamide: Experiments and modeling of the stress–strain behavior. Polymer Engineering and Science, 2017, 57, 95-104.	1.5	11
75	Solvent―and Halogenâ€Free Modification of Biobased Polyphenols to Introduce Vinyl Groups: Versatile Aromatic Building Blocks for Polymer Synthesis. ChemSusChem, 2017, 10, 1813-1822.	3.6	20
76	Original method for synthesis of chitosan-based antimicrobial agent by quaternary ammonium grafting. Carbohydrate Polymers, 2017, 157, 1922-1932.	5.1	64
77	Enzymatic synthesis of biobased poly(1,4-butylene succinate-ran-2,3-butylene succinate) copolyesters and characterization. Influence of 1,4- and 2,3-butanediol contents. European Polymer Journal, 2017, 93, 103-115.	2.6	15
78	Synthesis and characterization of fully biobased poly(propylene succinateâ€ranâ€propylene adipate). Analysis of the architectureâ€dependent physicochemical behavior. Journal of Polymer Science Part A, 2017, 55, 2738-2748.	2.5	9
79	Combined effect of nucleating agent and plasticizer on the crystallization behaviour of polylactide. Polymer Bulletin, 2017, 74, 4857-4886.	1.7	24
80	Synthesis and characterization of block poly(esterâ€etherâ€urethane)s from bacterial poly(3â€hydroxybutyrate) oligomers. Journal of Polymer Science Part A, 2017, 55, 1949-1961.	2.5	26
81	Ligninâ€Based Materials Through Thiol–Maleimide "Click―Polymerization. ChemSusChem, 2017, 10, 984-992.	3.6	39
82	Innovative plasticized alginate obtained by thermo-mechanical mixing: Effect of different biobased polyols systems. Carbohydrate Polymers, 2017, 157, 669-676.	5.1	36
83	Biobased and Aromatic Reversible Thermoset Networks from Condensed Tannins via the Dielsâ ^{~,} Alder Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 1199-1207.	3.2	76
84	Synthesis and characterization of biobased poly(butylene succinate- ran -butylene adipate). Analysis of the composition-dependent physicochemical properties. European Polymer Journal, 2017, 87, 84-98.	2.6	52
85	Synthesis and characterization of polyurethane foams derived of fully renewable polyester polyols from sorbitol. European Polymer Journal, 2017, 97, 319-327.	2.6	34
86	Lipase-catalyzed synthesis of biobased and biodegradable aliphatic copolyesters from short building blocks. Effect of the monomer length. European Polymer Journal, 2017, 97, 328-337.	2.6	16
87	Cyclic Carbonates as Safe and Versatile Etherifying Reagents for the Functionalization of Lignins and Tannins. ACS Sustainable Chemistry and Engineering, 2017, 5, 7334-7343.	3.2	82
88	Thermally healable and remendable lignin-based materials through Diels – Alder click polymerization. Polymer, 2017, 133, 78-88.	1.8	54
89	Study on the structure-properties relationship of biodegradable and biobased aliphatic copolyesters based on 1,3-propanediol, 1,4-butanediol, succinic and adipic acids. Polymer, 2017, 122, 105-116.	1.8	38
90	Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading. Composites Part A: Applied Science and Manufacturing, 2017, 93, 33-40.	3.8	46

#	Article	IF	CITATIONS
91	Sepiolite as a promising nanoclay for nano-biocomposites based on starch and biodegradable polyester. Materials Science and Engineering C, 2017, 70, 296-302.	3.8	65
92	Properties of glycerol-plasticized alginate films obtained by thermo-mechanical mixing. Food Hydrocolloids, 2017, 63, 414-420.	5.6	131
93	Thermomechanical and cyclic behavior of biocomposites based on renewable thermoplastics from dimer fatty acids. Journal of Applied Polymer Science, 2017, 134, .	1.3	10
94	Fungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production. Journal of Microbiology and Biotechnology, 2017, 27, 1-8.	0.9	36
95	Nanoclays for Lipase Immobilization: Biocatalyst Characterization and Activity in Polyester Synthesis. Polymers, 2016, 8, 416.	2.0	22
96	Renewable thermoplastic multiphase systems from dimer fatty acids, with mineral microfillers. Journal of Applied Polymer Science, 2016, 133, .	1.3	6
97	Novel multiphase systems based on thermoplastic chitosan: Analysis of the structure-properties relationships. AIP Conference Proceedings, 2016, , .	0.3	3
98	Advanced biobased and rigid foams, based on urethane-modified isocyanurate from oxypropylated gambier tannin polyol. Polymer Degradation and Stability, 2016, 132, 62-68.	2.7	33
99	Oxyalkylation of Condensed Tannin with Propylene Carbonate as an Alternative to Propylene Oxide. ACS Sustainable Chemistry and Engineering, 2016, 4, 3103-3112.	3.2	43
100	Elaboration and behavior of poly(3-hydroxybutyrate- co -4-hydroxybutyrate)- nano-biocomposites based on montmorillonite or sepiolite nanoclays. European Polymer Journal, 2016, 81, 64-76.	2.6	15
101	New Insights on the Chemical Modification of Lignin: Acetylation versus Silylation. ACS Sustainable Chemistry and Engineering, 2016, 4, 5212-5222.	3.2	103
102	Synthesis of potentially biobased copolyesters based on adipic acid and butanediols: Kinetic study between 1,4- and 2,3-butanediol and their influence on crystallization and thermal properties. Polymer, 2016, 99, 204-213.	1.8	44
103	Enzymatic Synthesis of a Bio-Based Copolyester from Poly(butylene succinate) and Poly((<i>R</i>)-3-hydroxybutyrate): Study of Reaction Parameters on the Transesterification Rate. Biomacromolecules, 2016, 17, 4054-4063.	2.6	34
104	Synthesis and characterization of advanced biobased thermoplastic nonisocyanate polyurethanes, with controlled aromatic-aliphatic architectures. European Polymer Journal, 2016, 84, 759-769.	2.6	59
105	Morphological, thermal, and mechanical properties of poly(ε aprolactone)/poly(ε aprolactone)â€grafted ellulose nanocrystals mats produced by electrospinning. Journal of Applied Polymer Science, 2016, 133, .	1.3	50
106	Biocomposites based on chemically modified cellulose fibers with renewable fattyâ€acidâ€based thermoplastic systems: Effect of different fiber treatments. Journal of Applied Polymer Science, 2016, 133, .	1.3	17
107	Characterization and Physicochemical Properties of Condensed Tannins from <i>Acacia catechu</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 1751-1760.	2.4	48
108	Itaconic and Fumaric Acid Production from Biomass Hydrolysates by Aspergillus Strains. Journal of Microbiology and Biotechnology, 2016, 26, 1557-1565.	0.9	37

#	Article	IF	CITATIONS
109	Composites structures for bone tissue reconstruction. AIP Conference Proceedings, 2015, , .	0.3	Ο
110	Nucleation, Crystallization, and Thermal Fractionation of Poly (Îμ-Caprolactone)-Grafted-Lignin: Effects of Grafted Chains Length and Lignin Content. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1736-1750.	2.4	38
111	Effect of Oligo-Hydroxyalkanoates on Poly(3-Hydroxybutyrate- <i>co</i> -4-Hydroxybutyrate)-Based Systems. Macromolecular Materials and Engineering, 2015, 300, 661-666.	1.7	10
112	Mechanical performance ofÂstarch-basedÂbiocomposites. , 2015, , 53-92.		3
113	Oxyalkylation of gambier tannin—Synthesis and characterization of ensuing biobased polyols. Industrial Crops and Products, 2015, 67, 295-304.	2.5	42
114	Solvent- and catalyst-free synthesis of fully biobased nonisocyanate polyurethanes with different macromolecular architectures. RSC Advances, 2015, 5, 100390-100400.	1.7	54
115	Elaboration, morphology and properties of renewable thermoplastics blends, based on polyamide and polyurethane synthesized from dimer fatty acids. European Polymer Journal, 2015, 67, 418-427.	2.6	42
116	Enzymatic ring-opening (co)polymerization of lactide stereoisomers catalyzed by lipases. Toward the in situ synthesis of organic/inorganic nanohybrids. Journal of Molecular Catalysis B: Enzymatic, 2015, 115, 20-28.	1.8	24
117	Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chemistry, 2015, 17, 2626-2646.	4.6	265
118	Poly (butylene adipate-co-terephthalate)/hydroxyapatite composite structures for bone tissue recovery. Polymer Degradation and Stability, 2015, 120, 61-69.	2.7	47
119	Mixed systems to assist enzymatic ring opening polymerization of lactide stereoisomers. RSC Advances, 2015, 5, 84627-84635.	1.7	25
120	Star-Pseudopolyrotaxane Organized in Nanoplatelets for Poly(ε-caprolactone)-Based Nanofibrous Scaffolds with Enhanced Surface Reactivity. Macromolecular Rapid Communications, 2015, 36, 292-297.	2.0	15
121	Elaboration, morphology and properties of starch/polyester nano-biocomposites based on sepiolite clay. Carbohydrate Polymers, 2015, 118, 250-256.	5.1	80
122	Advanced Nano-biocomposites Based on Starch. , 2015, , 1467-1553.		4
123	Advanced Nano-biocomposites Based on Starch. , 2014, , 1-75.		14
124	Nanobiocomposites Based on Plasticized Starch. , 2014, , 211-239.		7
125	Synthesis and characterization of fully biobased aromatic polyols – oxybutylation of condensed tannins towards new macromolecular architectures. RSC Advances, 2014, 4, 61564-61572.	1.7	27

#	Article	IF	CITATIONS
127	Lipase catalyzed synthesis of polycaprolactone and clay-based nanohybrids. Polymer, 2014, 55, 1648-1655.	1.8	27
128	Chemical modification of lignins: Towards biobased polymers. Progress in Polymer Science, 2014, 39, 1266-1290.	11.8	1,458
129	Original biobased nonisocyanate polyurethanes: solvent- and catalyst-free synthesis, thermal properties and rheological behaviour. RSC Advances, 2014, 4, 54018-54025.	1.7	109
130	Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols. European Polymer Journal, 2014, 61, 197-205.	2.6	108
131	Original polyols based on organosolv lignin and fatty acids: new bio-based building blocks for segmented polyurethane synthesis. Green Chemistry, 2014, 16, 3958-3970.	4.6	126
132	Elaboration and properties of novel biobased nanocomposites with halloysite nanotubes and thermoplastic polyurethane from dimerized fatty acids. Polymer, 2014, 55, 5226-5234.	1.8	46
133	Elaboration and Characterization of Coaxial Electrospun Poly(εâ€Caprolactone)/Gelatin Nanofibers for Biomedical Applications. Advances in Polymer Technology, 2014, 33, .	0.8	9
134	Differentiation of human adipose-derived stem cells seeded on mineralized electrospun co-axial poly(ε-caprolactone) (PCL)/gelatin nanofibers. Journal of Materials Science: Materials in Medicine, 2014, 25, 1137-1148.	1.7	40
135	Polyhydroxyalkanoate-based Multiphase Materials. RSC Green Chemistry, 2014, , 119-140.	0.0	2
136	Synthesis, thermal properties, rheological and mechanical behaviors of lignins-grafted-poly(ε-caprolactone). Polymer, 2013, 54, 3882-3890.	1.8	74
137	Crystallinity study of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) with organo-modified montmorillonite. Polymer Testing, 2013, 32, 1253-1260.	2.3	20
138	On the heterogeneous composition of bacterial polyhydroxyalkanoate terpolymers. Bioresource Technology, 2013, 147, 434-441.	4.8	8
139	Plasma-polymer coatings onto different biodegradable polyesters surfaces. European Polymer Journal, 2013, 49, 882-892.	2.6	22
140	Glycerol plasticised chitosan: A study of biodegradation via carbon dioxide evolution and nuclear magnetic resonance. Polymer Degradation and Stability, 2013, 98, 1236-1246.	2.7	30
141	Synthesis, Properties, Environmental and Biomedical Applications of Polylactic Acid. , 2013, , 171-188.		13
142	Nonisothermal crystallization kinetics of poly(lactide)—effect of plasticizers and nucleating agent. Polymer Engineering and Science, 2013, 53, 1085-1098.	1.5	42
143	Elaboration and properties of plasticised chitosan-based exfoliated nano-biocomposites. Polymer, 2013, 54, 3654-3662.	1.8	44
144	Starch-based nano-biocomposites. Progress in Polymer Science, 2013, 38, 1590-1628.	11.8	455

#	Article	IF	CITATIONS
145	Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers. Carbohydrate Polymers, 2013, 95, 241-251.	5.1	122
146	Design of Flexible Free Standing Plasma Polymer-Based Films As Hosts for Enzyme Immobilization. Journal of Physical Chemistry C, 2012, 116, 21356-21365.	1.5	9
147	Green Nano-Biocomposites. Green Energy and Technology, 2012, , 1-11.	0.4	21
148	Clay Nano-Biocomposites Based on PBAT Aromatic Copolyesters. Green Energy and Technology, 2012, , 219-235.	0.4	1
149	One step preparation of plasma based polymer films for drug release. Materials Science and Engineering C, 2012, 32, 2103-2108.	3.8	19
150	Biodegradable Polymers. Green Energy and Technology, 2012, , 13-39.	0.4	124
151	Relationship between morphology, properties and degradation parameters ofÂnovative biobased thermoplastic polyurethanes obtained from dimer fatty acids. Polymer Degradation and Stability, 2012, 97, 1964-1969.	2.7	98
152	Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability. Polymer Degradation and Stability, 2012, 97, 2037-2051.	2.7	43
153	BIOPOL-2011 Special Issue. Polymer Degradation and Stability, 2012, 97, 1851.	2.7	0
154	Environmental Silicate Nano-Biocomposites. Green Energy and Technology, 2012, , .	0.4	85
155	Viabilidade celular de nanofibras de polÃmeros biodegradáveis e seus nanocompósitos com argila montmorilonita. Polimeros, 2012, 22, 34-41.	0.2	18
156	Effect of crystallization on barrier properties of formulated polylactide. Polymer International, 2012, 61, 180-189.	1.6	73
157	Structure and Morphology of New Bioâ€Based Thermoplastic Polyurethanes Obtained From Dimeric Fatty Acids. Macromolecular Materials and Engineering, 2012, 297, 777-784.	1.7	62
158	Elaboration and Characterization of Nano-Biocomposites Based on Plasticized Poly(Hydroxybutyrate-Co-Hydroxyvalerate) with Organo-Modified Montmorillonite. Journal of Polymers and the Environment, 2012, 20, 283-290.	2.4	36
159	Plasma polymer films as an alternative to (PSS-PAH)n or (PSS-PDADMAC)n films to retain active enzymes in exponentially growing polyelectrolyte multilayers. Colloids and Surfaces B: Biointerfaces, 2012, 97, 124-131.	2.5	10
160	Growth rate, morphology, chemical composition and oligomerization state of plasma polymer films made from acrylic and methacrylic acid under dielectric barrier discharge. Reactive and Functional Polymers, 2012, 72, 341-348.	2.0	23
161	Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Progress in Polymer Science, 2012, 37, 595-623.	11.8	229
162	Biocomposites Based on Biodegradable Thermoplastic Polyester and Lignocellulose Fibers. , 2011, ,		3

162 453-478.

#	Article	IF	CITATIONS
163	Natural Fibers, Bio- and Nanocomposites. International Journal of Polymer Science, 2011, 2011, 1-2.	1.2	29
164	Cellulose-Based Bio- and Nanocomposites: A Review. International Journal of Polymer Science, 2011, 2011, 1-35.	1.2	499
165	Meet our Authors. MRS Bulletin, 2011, 36, 693-694.	1.7	0
166	Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). Journal of Polymers and the Environment, 2011, 19, 362-371.	2.4	113
167	Novative Biomaterials Based on Chitosan and Poly(ε-Caprolactone): Elaboration of Porous Structures. Journal of Polymers and the Environment, 2011, 19, 819-826.	2.4	28
168	Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Applied Microbiology and Biotechnology, 2011, 89, 1583-1598.	1.7	77
169	Structure and properties of clay nanoâ€biocomposites based on poly(lactic acid) plasticized with polyadipates. Polymers for Advanced Technologies, 2011, 22, 2206-2213.	1.6	60
170	Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydrate Polymers, 2011, 83, 947-952.	5.1	166
171	High strain rate behaviour of renewable biocomposites based on dimer fatty acid polyamides and cellulose fibres. Composites Science and Technology, 2011, 71, 674-682.	3.8	36
172	Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. Journal of Biotechnology, 2011, 151, 66-76.	1.9	244
173	Accelerated artificial ageing of new dimer fatty acid-based polyamides. Polymer Degradation and Stability, 2011, 96, 1097-1103.	2.7	35
174	Biorenewable nanocomposites. MRS Bulletin, 2011, 36, 703-710.	1.7	35
175	Bio-nanocomposites based on starch. , 2011, , 234-260.		8
176	Shear induced clay organoâ€modification: application to plasticized starch nanoâ€biocomposites. Polymers for Advanced Technologies, 2010, 21, 578-583.	1.6	6
177	Micromechanically-Based Formulation of the Cooperative Model for the Yield Behavior of Starch-Based Nano-Biocomposites. Journal of Nanoscience and Nanotechnology, 2010, 10, 2949-2955.	0.9	6
178	Starch-based nano-biocomposites: Plasticizer impact on the montmorillonite exfoliation process. Carbohydrate Polymers, 2010, 79, 941-947.	5.1	127
179	How does water diffuse in starch/montmorillonite nano-biocomposite materials?. Carbohydrate Polymers, 2010, 82, 128-135.	5.1	79
180	Yield behaviour of renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres. Composites Science and Technology, 2010, 70, 525-529.	3.8	23

#	Article	IF	CITATIONS
181	Correlation between Composition, Structure and Properties of Poly(lactic acid)/Polyadipateâ€Based Nanoâ€Biocomposites. Macromolecular Materials and Engineering, 2010, 295, 551-558.	1.7	37
182	Dimer acid-based thermoplastic bio-polyamides: Reaction kinetics, properties and structure. Polymer, 2010, 51, 5895-5902.	1.8	90
183	Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: Thermal, physical and mechanical properties. Composites Science and Technology, 2010, 70, 504-509.	3.8	58
184	Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydrate Polymers, 2010, 80, 145-153.	5.1	133
185	Nano- and Biocomposites. Materials Today, 2010, 13, 57.	8.3	3
186	Biocomposites based on plasticized starch. Biofuels, Bioproducts and Biorefining, 2009, 3, 329-343.	1.9	167
187	Study of pseudoâ€multilayer structures based on starchâ€polycaprolactone extruded blends. Polymer Engineering and Science, 2009, 49, 1177-1186.	1.5	25
188	Progress in nano-biocomposites based on polysaccharides and nanoclays. Materials Science and Engineering Reports, 2009, 67, 1-17.	14.8	267
189	Effect of clay organomodifiers on degradation of polyhydroxyalkanoates. Polymer Degradation and Stability, 2009, 94, 789-796.	2.7	97
190	Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 2009, 34, 125-155.	11.8	897
191	Characterization of Nano-Structured Poly(D,L-lactic acid) Nonwoven Mats Obtained from Different Solutions by Electrospinning. Journal of Macromolecular Science - Physics, 2009, 48, 1222-1240.	0.4	24
192	Potential Use of Polyhydroxyalkanoate (PHA) for Biocomposite Development. , 2009, , 193-226.		4
193	Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites. Acta Biomaterialia, 2008, 4, 1707-1714.	4.1	66
194	Biodegradable Blends Based on Starch and Poly(Lactic Acid): Comparison of Different Strategies and Estimate of Compatibilization. Journal of Polymers and the Environment, 2008, 16, 286-297.	2.4	88
195	Processing and characterization of biodegradable polymer nanocomposites: detection of dispersion state. Rheologica Acta, 2008, 47, 543-553.	1.1	33
196	Structure and Properties of PHA/Clay Nanoâ€Biocomposites Prepared by Melt Intercalation. Macromolecular Chemistry and Physics, 2008, 209, 1473-1484.	1.1	110
197	Polyurethanes Based on Castor Oil: Kinetics, Chemical, Mechanical and Thermal Properties. Macromolecular Materials and Engineering, 2008, 293, 922-929.	1.7	190
198	Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)-based multiphase systems. Polymer Degradation and Stability, 2008, 93, 413-421.	2.7	138

#	Article	IF	CITATIONS
199	Polylactic Acid: Synthesis, Properties and Applications. , 2008, , 433-450.		110
200	New Approach to Elaborate Exfoliated Starch-Based Nanobiocomposites. Biomacromolecules, 2008, 9, 896-900.	2.6	138
201	Cellulose-based biocomposites: comparison of different multiphasic systems. Composite Interfaces, 2007, 14, 787-805.	1.3	16
202	Nonisothermal crystallization behavior of poly(butylene adipate-co-terephthalate)/clay nano-biocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1503-1510.	2.4	48
203	Properties of biocomposites based on lignocellulosic fillers. Carbohydrate Polymers, 2006, 66, 480-493.	5.1	190
204	Effects of lignin content on the properties of lignocellulose-based biocomposites. Carbohydrate Polymers, 2006, 66, 537-545.	5.1	97
205	Aromatic Copolyester-based Nano-biocomposites: Elaboration, Structural Characterization and Properties. Journal of Polymers and the Environment, 2006, 14, 393-401.	2.4	148
206	Current Progress on Biodegradable Materials Based on Plasticized Starch. Australian Journal of Chemistry, 2005, 58, 457.	0.5	18
207	Evaluation of starch-PE multilayers: Processing and properties. Polymer Engineering and Science, 2005, 45, 217-224.	1.5	26
208	Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2004, 44, 231-274.	2.2	620
209	Starch-based biodegradable blends: morphology and interface properties. Polymer International, 2004, 53, 2115-2124.	1.6	140
210	Properties of thermoplastic composites based on wheat-straw lignocellulosic fillers. Journal of Applied Polymer Science, 2004, 93, 428-436.	1.3	114
211	Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers, 2004, 56, 111-122.	5.1	477
212	Antioxidant properties of lignin in polypropylene. Polymer Degradation and Stability, 2003, 81, 9-18.	2.7	356
213	In-line determination of plasticized wheat starch viscoelastic behavior: impact of processing. Carbohydrate Polymers, 2003, 53, 169-182.	5.1	69
214	Comprehensive experimental study of a starch/polyesteramide coextrusion. Journal of Applied Polymer Science, 2002, 86, 2586-2600.	1.3	22
215	Plasticized starch–cellulose interactions in polysaccharide composites. Polymer, 2001, 42, 6565-6572.	1.8	296
216	Association between plasticized starch and polyesters: Processing and performances of injected biodegradable systems. Polymer Engineering and Science, 2001, 41, 727-734.	1.5	134

#	Article	IF	CITATIONS
217	Starch-Based Biodegradable Materials Suitable for Thermoforming Packaging. Starch/Staerke, 2001, 53, 368.	1.1	122
218	Properties of Biodegradable Multilayer Films Based on Plasticized Wheat Starch. Starch/Staerke, 2001, 53, 372.	1.1	152
219	Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001, 42, 6209-6219.	1.8	1,369
220	Blends of thermoplastic starch and polyesteramide: processing and properties. Journal of Applied Polymer Science, 2000, 76, 1117-1128.	1.3	144
221	Properties of thermoplastic blends: starch–polycaprolactone. Polymer, 2000, 41, 4157-4167.	1.8	498
222	Determination of the microtexture of reinforced thermoplastics by image analysis. Composites Science and Technology, 1998, 58, 377-387.	3.8	16
223	Surface Analysis of Phenolic Composites Obtained By RTM Process. Journal of Reinforced Plastics and Composites, 1998, 17, 1167-1184.	1.6	9
224	Evolution of the three-dimensional orientation distribution of glass fibers in injected isotactic polypropylene. Polymer Engineering and Science, 1997, 37, 329-337.	1.5	38
225	Morphological Determinations of Fiber Composites. Microscopy Microanalysis Microstructures, 1996, 7, 433-439.	0.4	2
226	Granulometric Characterization of Short Fiberglass in Reinforced Polypropylene. Relation to Processing Conditions and Mechanical Properties. International Journal of Polymer Analysis and Characterization, 1995, 1, 339-347.	0.9	23
227	Interactions between cellulose and plasticized wheat starch—properties of biodegradable multiphase systems. Special Publication - Royal Society of Chemistry, 0, , 253-259.	0.0	2
228	Synthesis of Bio-Based Photo-Cross-Linkable Polyesters Based on Caffeic Acid through Selective Lipase-Catalyzed Polymerization. Macromolecules, 0, , .	2.2	5