Shuaiqi Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/37348/publications.pdf

Version: 2024-02-01

63 5,584 38 62 papers citations h-index g-index

65 65 8990 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Unveiling the water-resistant mechanism of Cu(I)-O-Co interfaces for catalytic oxidation. Chemical Engineering Journal, 2022, 429, 132219.	12.7	15
2	Acid-activated layered δ-MnO2 promotes VOCs combustion. Applied Surface Science, 2022, 574, 151707.	6.1	20
3	Long Cycle Life and Highâ€Rate Sodium Metal Batteries Enabled by Regulating 3D Frameworks with Artificial Solidâ€State Interphases. Advanced Energy Materials, 2022, 12, .	19.5	29
4	Quenching-induced surface modulation of perovskite oxides to boost catalytic oxidation activity. Journal of Hazardous Materials, 2022, 433, 128765.	12.4	12
5	Engineering Cobalt Oxide with Coexisting Cobalt Defects and Oxygen Vacancies for Enhanced Catalytic Oxidation of Toluene. ACS Catalysis, 2022, 12, 4906-4917.	11.2	116
6	A dual plasmonic core—shell Pt/[TiN@TiO2] catalyst for enhanced photothermal synergistic catalytic activity of VOCs abatement. Nano Research, 2022, 15, 7071-7080.	10.4	17
7	Recent Progress of Thermocatalytic and Photo/Thermocatalytic Oxidation for VOCs Purification over Manganese-based Oxide Catalysts. Environmental Science & Environmental Scien	10.0	185
8	Boosting Electrochemical Performance of Hematite Nanorods via Quenching-Induced Alkaline Earth Metal Ion Doping. Processes, 2021, 9, 1102.	2.8	2
9	Activating Metal Oxides Nanocatalysts for Electrocatalytic Water Oxidation by Quenching-Induced Near-Surface Metal Atom Functionality. Journal of the American Chemical Society, 2021, 143, 14169-14177.	13.7	101
10	Engineering Co3+-rich crystal planes on Co3O4 hexagonal nanosheets for CO and hydrocarbons oxidation with enhanced catalytic activity and water resistance. Chemical Engineering Journal, 2021, 420, 130448.	12.7	34
11	Boosting the electrochemical performance of hematite nanorods <i>via</i> quenching-induced metal single atom functionalization. Journal of Materials Chemistry A, 2021, 9, 3492-3499.	10.3	20
12	A Hydrothermally Stable Single-Atom Catalyst of Pt Supported on High-Entropy Oxide/Al ₂ O ₃ : Structural Optimization and Enhanced Catalytic Activity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48764-48773.	8.0	21
13	Interfacial effects in hierarchically porous \hat{l} ±-MnO2/Mn3O4 heterostructures promote photocatalytic oxidation activity. Applied Catalysis B: Environmental, 2020, 268, 118418.	20.2	100
14	Airâ€Stable and Dendriteâ€Free Lithium Metal Anodes Enabled by a Hybrid Interphase of C ₆₀ and Mg. Advanced Energy Materials, 2020, 10, 1903292.	19.5	57
15	Challenges, mitigation strategies and perspectives in development of Li metal anode. Nano Select, 2020, 1, 622-638.	3.7	4
16	Cu ²⁺ -Decorated Porous Co ₃ O ₄ Nanosheets for Photothermocatalytic Oxidation of Toluene. ACS Applied Nano Materials, 2020, 3, 10454-10461.	5.0	31
17	Effect of Absorbed Sulfate Poisoning on the Performance of Catalytic Oxidation of VOCs over MnO ₂ . ACS Applied Materials & MnO ₃ . ACS Applied Materials & MnO ₃ . ACS Applied Materials & MnO ₄ . ACS Applied Materials & MnO ₄ . ACS Applied Materials & MnO ₅ . ACS Applied MnO	8.0	36
18	Cu-MOF derived Cu–C nanocomposites towards high performance electrochemical supercapacitors. RSC Advances, 2020, 10, 4621-4629.	3.6	17

#	Article	IF	CITATIONS
19	Highly Stabilized Silicon Nanoparticles for Lithium Storage <i>via</i> Hierarchical Carbon Architecture. ACS Applied Energy Materials, 2020, 3, 4777-4786.	5.1	15
20	Dendrite-free and air-stable lithium metal batteries enabled by electroless plating with aluminum fluoride. Journal of Materials Chemistry A, 2020, 8, 9218-9227.	10.3	16
21	Upcycling of Electroplating Sludge into Ultrafine Sn@C Nanorods with Highly Stable Lithium Storage Performance. Nano Letters, 2019, 19, 1860-1866.	9.1	139
22	Stable Liâ€Metal Deposition via a 3D Nanodiamond Matrix with Ultrahigh Young's Modulus. Small Methods, 2019, 3, 1900325.	8.6	40
23	Bulk Heterojunction Quasi-Two-Dimensional Perovskite Solar Cell with 1.18 V High Photovoltage. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2935-2943.	8.0	13
24	Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5938-5946.	8.0	31
25	Allâ€Solidâ€State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility. Advanced Energy Materials, 2019, 9, 1802753.	19.5	197
26	Ultrafast Allâ€Solidâ€State Coaxial Asymmetric Fiber Supercapacitors with a High Volumetric Energy Density. Advanced Energy Materials, 2018, 8, 1702946.	19.5	86
27	Exploratory Study of Zn _{<i>x</i>} PbO _{<i>y</i>} Photoelectrodes for Unassisted Overall Solar Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 10918-10926.	8.0	7
28	Synthesis of graphene oxide/metal–organic frameworks hybrid materials for enhanced removal of Methylene blue in acidic and alkaline solutions. Journal of Chemical Technology and Biotechnology, 2018, 93, 698-709.	3.2	46
29	Morphology and property investigation of primary particulate matter particles from different sources. Nano Research, 2018, 11, 3182-3192.	10.4	54
30	Comparison Study on the Adsorption Capacity of Rhodamine B, Congo Red, and Orange II on Fe-MOFs. Nanomaterials, 2018, 8, 248.	4.1	45
31	Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Science Advances, 2017, 3, e1601978.	10.3	245
32	Sulfiphilic Nickel Phosphosulfide Enabled Li ₂ S Impregnation in 3D Graphene Cages for Li–S Batteries. Advanced Materials, 2017, 29, 1603366.	21.0	139
33	Quinone Electrode Materials for Rechargeable Lithium/Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1700278.	19.5	268
34	Fullyâ€Inorganic Trihalide Perovskite Nanocrystals: A New Research Frontier of Optoelectronic Materials. Advanced Materials, 2017, 29, 1700775.	21.0	230
35	High Electroactive Material Loading on a Carbon Nanotube@3D Graphene Aerogel for Highâ€Performance Flexible Allâ€Solidâ€State Asymmetric Supercapacitors. Advanced Functional Materials, 2017, 27, 1701122.	14.9	138
36	Morphologyâ€Conserved Transformations of Metalâ€Based Precursors to Hierarchically Porous Microâ€Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1607015.	21.0	79

#	Article	IF	CITATIONS
37	Lithium Dendrites: Liquid-Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution (Adv. Mater. 13/2017). Advanced Materials, 2017, 29, .	21.0	1
38	Improved cycling stability of the capping agent-free nanocrystalline FeS2 cathode via an upper cut-off voltage control. Journal of Materials Science, 2017, 52, 2442-2451.	3.7	20
39	Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. Journal of Materials Chemistry A, 2017, 5, 19091-19097.	10.3	55
40	Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling. Ultrasonics Sonochemistry, 2017, 39, 845-852.	8.2	126
41	In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts. Nano Letters, 2016, 16, 7588-7596.	9.1	186
42	Efficient solar-driven water splitting by nanocone BiVO ₄ -perovskite tandem cells. Science Advances, 2016, 2, e1501764.	10.3	351
43	Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy, 2016, 26, 610-619.	16.0	103
44	Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. Angewandte Chemie, 2016, 128, 6516-6520.	2.0	38
45	Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 6406-6410.	13.8	106
46	Aluminum nanopyramid array with tunable ultraviolet–visible–infrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199. Biosensors and Bioelectronics, 2016, 79, 500-507.	10.1	42
47	Lithium Batteries: Highly Nitridated Graphene-Li2S Cathodes with Stable Modulated Cycles (Adv.) Tj ETQq $1\ 1\ 0.7$	784314 rg 19.5	BT Overloc
48	Highly Nitridated Graphene–Li ₂ S Cathodes with Stable Modulated Cycles. Advanced Energy Materials, 2015, 5, 1501369.	19.5	97
49	All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnO _{<i>x</i>} Nanospike and Graphene Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 22172-22180.	8.0	59
50	Magnetic-field-assisted aerosol pyrolysis synthesis of iron pyrite sponge-like nanochain networks as cost-efficient counter electrodes in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5508-5515.	10.3	22
51	Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Nanoscale, 2014, 6, 3626-3631.	5. 6	57
52	A three-dimensional hexagonal fluorine-doped tin oxide nanocone array: a superior light harvesting electrode for high performance photoelectrochemical water splitting. Energy and Environmental Science, 2014, 7, 3651-3658.	30.8	103
53	Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures. Nano Letters, 2014, 14, 2123-2129.	9.1	307
54	Self-assembly of Ni2P nanowires as high-efficiency electrocatalyst for dye-sensitized solar cells. MRS Communications, 2012, 2, 97-99.	1.8	7

#	Article	IF	CITATIONS
55	A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Research, 2012, 5, 726-738.	10.4	116
56	High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Physical Chemistry Chemical Physics, 2011, 13, 12554.	2.8	273
57	Doubleâ€Layered Photoanodes from Variableâ€Size Anatase TiO ₂ Nanospindles: A Candidate for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2010, 49, 3675-3679.	13.8	159
58	Synthesis and high lithium electroactivity of rutile TiO <inf>2</inf> @C nanorods., 2010,,.		1
59	Synthesis of Size-Tunable Anatase TiO ₂ Nanospindles and Their Assembly into Anatase@Titanium Oxynitride/Titanium Nitrideâ^'Graphene Nanocomposites for Rechargeable Lithium Ion Batteries with High Cycling Performance. ACS Nano, 2010, 4, 6515-6526.	14.6	262
60	Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. Journal of Materials Chemistry, 2010, 20, 1001-1006.	6.7	137
61	A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. Journal of Materials Chemistry, 2010, 20, 4439.	6.7	185
62	Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Chemical Communications, 2010, 46, 8359.	4.1	57
63	General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips. Journal of Materials Chemistry, 2009, 19, 976.	6.7	61