Stephan Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3733638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. New England Journal of Medicine, 2003, 348, 1967-1976.	27.0	3,971
2	Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368, 409-412.	12.6	2,527
3	Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, The, 2020, 396, 467-478.	13.7	2,080
4	An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Medicine, 2004, 10, 871-875.	30.7	679
5	SARS — beginning to understand a new virus. Nature Reviews Microbiology, 2003, 1, 209-218.	28.6	469
6	Comparison of the Transcription and Replication Strategies of Marburg Virus and Ebola Virus by Using Artificial Replication Systems. Journal of Virology, 1999, 73, 2333-2342.	3.4	425
7	Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Archives of Virology, 2010, 155, 2083-2103.	2.1	407
8	DC-SIGN and DC-SIGNR Interact with the Glycoprotein of Marburg Virus and the S Protein of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2004, 78, 12090-12095.	3.4	357
9	Phase 1 Trials of rVSV Ebola Vaccine in Africa and Europe. New England Journal of Medicine, 2016, 374, 1647-1660.	27.0	355
10	GP mRNA of Ebola Virus Is Edited by the Ebola Virus Polymerase and by T7 and Vaccinia Virus Polymerases1. Virology, 1995, 214, 421-430.	2.4	349
11	Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Molecular Medicine, 2015, 7, 17-23.	6.9	347
12	Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing Antibodies from COVID-19 Patients. Cell, 2020, 182, 843-854.e12.	28.9	310
13	A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA. New England Journal of Medicine, 2016, 374, 1635-1646.	27.0	295
14	Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature, 2015, 524, 97-101.	27.8	272
15	The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial. Lancet Infectious Diseases, The, 2015, 15, 1156-1166.	9.1	251
16	Ebola Virus Enters Host Cells by Macropinocytosis and Clathrin-Mediated Endocytosis. Journal of Infectious Diseases, 2011, 204, S957-S967.	4.0	219
17	Three of the Four Nucleocapsid Proteins of Marburg Virus, NP, VP35, and L, Are Sufficient To Mediate Replication and Transcription of Marburg Virus-Specific Monocistronic Minigenomes. Journal of Virology, 1998, 72, 8756-8764.	3.4	212
18	Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4275-4280.	7.1	210

#	Article	IF	CITATIONS
19	Severe Ebola virus disease with vascular leakage and multiorgan failure: treatment of a patient in intensive care. Lancet, The, 2015, 385, 1428-1435.	13.7	199
20	LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology, 2005, 340, 224-236.	2.4	192
21	Structure and assembly of the Ebola virus nucleocapsid. Nature, 2017, 551, 394-397.	27.8	185
22	Inclusion Bodies Are a Site of Ebolavirus Replication. Journal of Virology, 2012, 86, 11779-11788.	3.4	183
23	Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infectious Diseases, The, 2020, 20, 816-826.	9.1	182
24	Inhibition of Filovirus Replication by the Zinc Finger Antiviral Protein. Journal of Virology, 2007, 81, 2391-2400.	3.4	177
25	The clinically approved drugs amiodarone, dronedarone and verapamil inhibit filovirus cell entry. Journal of Antimicrobial Chemotherapy, 2014, 69, 2123-2131.	3.0	159
26	Virucidal Activity of World Health Organization–Recommended Formulations Against Enveloped Viruses, Including Zika, Ebola, and Emerging Coronaviruses. Journal of Infectious Diseases, 2017, 215, 902-906.	4.0	151
27	Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO Journal, 2004, 23, 2175-2184.	7.8	149
28	Ebola Virus VP30-Mediated Transcription Is Regulated by RNA Secondary Structure Formation. Journal of Virology, 2002, 76, 8532-8539.	3.4	140
29	Management of Accidental Exposure to Ebola Virus in the Biosafety Level 4 Laboratory, Hamburg, Germany. Journal of Infectious Diseases, 2011, 204, S785-S790.	4.0	138
30	Protective Efficacy of Recombinant Modified Vaccinia Virus Ankara Delivering Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein. Journal of Virology, 2015, 89, 8651-8656.	3.4	138
31	The Matrix Protein VP40 from Ebola Virus Octamerizes into Pore-like Structures with Specific RNA Binding Properties. Structure, 2003, 11, 423-433.	3.3	137
32	Human Cell Tropism and Innate Immune System Interactions of Human Respiratory Coronavirus EMC Compared to Those of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2013, 87, 5300-5304.	3.4	135
33	ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine, 2017, 35, 3780-3788.	3.8	133
34	Middle East Respiratory Syndrome Coronavirus Spike Protein Delivered by Modified Vaccinia Virus Ankara Efficiently Induces Virus-Neutralizing Antibodies. Journal of Virology, 2013, 87, 11950-11954.	3.4	127
35	Cryo-Electron Tomography of Marburg Virus Particles and Their Morphogenesis within Infected Cells. PLoS Biology, 2011, 9, e1001196.	5.6	125
36	Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infectious Diseases, The, 2020, 20, 827-838.	9.1	125

#	Article	IF	CITATIONS
37	Infection of Nail̀^ve Target Cells with Virus-Like Particles: Implications for the Function of Ebola Virus VP24. Journal of Virology, 2006, 80, 7260-7264.	3.4	123
38	Ebola and Marburg haemorrhagic fever. Journal of Clinical Virology, 2015, 64, 111-119.	3.1	119
39	Phosphorylation of VP30 Impairs Ebola Virus Transcription. Journal of Biological Chemistry, 2002, 277, 33099-33104.	3.4	116
40	Oligomerization of Ebola Virus VP40 Is Essential for Particle Morphogenesis and Regulation of Viral Transcription. Journal of Virology, 2010, 84, 7053-7063.	3.4	109
41	High Secretion of Interferons by Human Plasmacytoid Dendritic Cells upon Recognition of Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2015, 89, 3859-3869.	3.4	108
42	A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform. Journal of Virology, 2015, 89, 11654-11667.	3.4	108
43	Systems Vaccinology Identifies an Early Innate Immune Signature as a Correlate of Antibody Responses to the Ebola Vaccine rVSV-ZEBOV. Cell Reports, 2017, 20, 2251-2261.	6.4	107
44	VP40, the Matrix Protein of Marburg Virus, Is Associated with Membranes of the Late Endosomal Compartment. Journal of Virology, 2002, 76, 1825-1838.	3.4	105
45	Multivesicular Bodies as a Platform for Formation of the Marburg Virus Envelope. Journal of Virology, 2004, 78, 12277-12287.	3.4	105
46	VP40 Octamers Are Essential for Ebola Virus Replication. Journal of Virology, 2005, 79, 1898-1905.	3.4	104
47	Proteolytic Processing of Marburg Virus Glycoprotein. Virology, 2000, 268, 1-6.	2.4	102
48	Favipiravir and Ribavirin Treatment of Epidemiologically Linked Cases of Lassa Fever. Clinical Infectious Diseases, 2017, 65, 855-859.	5.8	101
49	Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 301-311.	2.1	99
50	Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14402-14407.	7.1	93
51	Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nature Medicine, 2019, 25, 1589-1600.	30.7	92
52	Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Research, 2004, 100, 249-255.	2.2	90
53	Phosphorylation of Ebola Virus VP30 Influences the Composition of the Viral Nucleocapsid Complex. Journal of Biological Chemistry, 2013, 288, 11165-11174.	3.4	90
54	The Ebola Virus Glycoprotein Contributes to but Is Not Sufficient for Virulence In Vivo. PLoS Pathogens, 2012, 8, e1002847.	4.7	88

#	Article	IF	CITATIONS
55	Crystal structure of the C-terminal domain of Ebola virus VP30 reveals a role in transcription and nucleocapsid association. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 624-629.	7.1	82
56	Ultrastructural Organization of Recombinant Marburg Virus Nucleoprotein: Comparison with Marburg Virus Inclusions. Journal of Virology, 2000, 74, 3899-3904.	3.4	81
57	VP24 of Marburg Virus Influences Formation of Infectious Particles. Journal of Virology, 2005, 79, 13421-13433.	3.4	80
58	Filoviruses: Interactions with the host cell. Cellular and Molecular Life Sciences, 2008, 65, 756-76.	5.4	80
59	Phylogeny of the SARS Coronavirus. Science, 2003, 302, 1504b-1505.	12.6	79
60	Analysis of the Interaction of Ebola Virus Glycoprotein with DCâ€SIGN (Dendritic Cell–Specific) Tj ETQq0 0 0 Infectious Diseases, 2007, 196, S237-S246.	rgBT /Over 4.0	lock 10 Tf 50 78
61	The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Research, 2017, 137, 76-81.	4.1	76
62	The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30. Molecular Cell, 2018, 69, 136-145.e6.	9.7	76
63	The Matrix Protein of Marburg Virus Is Transported to the Plasma Membrane along Cellular Membranes: Exploiting the Retrograde Late Endosomal Pathway. Journal of Virology, 2004, 78, 2382-2393.	3.4	73
64	Budding of Marburgvirus is associated with filopodia. Cellular Microbiology, 2007, 9, 939-951.	2.1	73
65	Role of Ebola Virus VP30 in Transcription Reinitiation. Journal of Virology, 2008, 82, 12569-12573.	3.4	73
66	Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels. Scientific Reports, 2019, 9, 16292.	3.3	72
67	Tsg101 Is Recruited by a Late Domain of the Nucleocapsid Protein To Support Budding of Marburg Virus-Like Particles. Journal of Virology, 2010, 84, 7847-7856.	3.4	71
68	Morphology of Marburg Virus NP–RNA. Virology, 2002, 296, 300-307.	2.4	69
69	Ebola Virus Transcription Activator VP30 Is a Zinc-Binding Protein. Journal of Virology, 2003, 77, 3334-3338.	3.4	67
70	Oligomerization of Ebola Virus VP30 Is Essential for Viral Transcription and Can Be Inhibited by a Synthetic Peptide. Journal of Biological Chemistry, 2003, 278, 41830-41836.	3.4	67
71	Diagnostic Reverseâ€Transcription Polymerase Chain Reaction Kit for Filoviruses Based on the Strain Collections of all European Biosafety Level 4 Laboratories. Journal of Infectious Diseases, 2007, 196, S199-S204.	4.0	65
72	Establishment and application of an infectious virus-like particle system for Marburg virus. Journal of General Virology, 2010, 91, 1325-1334.	2.9	65

#	Article	IF	CITATIONS
73	Electron Tomography Reveals the Steps in Filovirus Budding. PLoS Pathogens, 2010, 6, e1000875.	4.7	65
74	Dose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV Immunization. EBioMedicine, 2017, 19, 107-118.	6.1	64
75	Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia. PLoS ONE, 2017, 12, e0188251.	2.5	64
76	Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA-SARS-2-S in preclinical vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	64
77	Homo-Oligomerization of Marburgvirus VP35 Is Essential for Its Function in Replication and Transcription. Journal of Virology, 2005, 79, 14876-14886.	3.4	62
78	Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study. Lancet Infectious Diseases, The, 2018, 18, 738-748.	9.1	62
79	Transport of Ebolavirus Nucleocapsids Is Dependent on Actin Polymerization: Live-Cell Imaging Analysis of Ebolavirus-Infected Cells. Journal of Infectious Diseases, 2015, 212, S160-S166.	4.0	61
80	Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry. Virology Journal, 2016, 13, 149.	3.4	61
81	Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle. Journal of Virology, 2016, 90, 4914-4925.	3.4	61
82	Termini of All mRNA Species of Marburg Virus: Sequence and Secondary Structure. Virology, 1996, 223, 376-380.	2.4	60
83	Efficient Budding of the Tacaribe Virus Matrix Protein Z Requires the Nucleoprotein. Journal of Virology, 2010, 84, 3603-3611.	3.4	59
84	Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Archives of Virology, 2014, 159, 1229-37.	2.1	59
85	Safety and immunogenicity of rVSVΔG-ZEBOV-GP Ebola vaccine in adults and children in Lambaréné, Gabon: A phase I randomised trial. PLoS Medicine, 2017, 14, e1002402.	8.4	57
86	Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1075-1080.	7.1	57
87	Functional Characterization of Adaptive Mutations during the West African Ebola Virus Outbreak. Journal of Virology, 2017, 91, .	3.4	56
88	Studies on membrane topology, N-glycosylation and functionality of SARS-CoV membrane protein. Virology Journal, 2009, 6, 79.	3.4	54
89	Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 1425-1432.	2.1	54
90	Multi-level inhibition of coronavirus replication by chemical ER stress. Nature Communications, 2021, 12, 5536.	12.8	54

#	Article	IF	CITATIONS
91	Acylation of the Marburg Virus Glycoprotein. Virology, 1995, 208, 289-297.	2.4	52
92	Phosphorylation of Marburg Virus VP30 at Serines 40 and 42 ls Critical for Its Interaction with NP Inclusions. Virology, 2001, 287, 171-182.	2.4	52
93	Inhibition of Marburg virus protein expression and viral release by RNA interference. Journal of General Virology, 2005, 86, 1181-1188.	2.9	52
94	Tacaribe Virus but Not Junin Virus Infection Induces Cytokine Release from Primary Human Monocytes and Macrophages. PLoS Neglected Tropical Diseases, 2011, 5, e1137.	3.0	51
95	Intracellular Transport and Processing of the Marburg Virus Surface Protein in Vertebrate and Insect Cells. Virology, 1996, 225, 145-155.	2.4	49
96	Establishment of Fruit Bat Cells (Rousettus aegyptiacus) as a Model System for the Investigation of Filoviral Infection. PLoS Neglected Tropical Diseases, 2010, 4, e802.	3.0	49
97	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	3.3	49
98	First International Quality Assurance Study on the Rapid Detection of Viral Agents of Bioterrorism. Journal of Clinical Microbiology, 2004, 42, 1753-1755.	3.9	47
99	Basolateral Budding of Marburg Virus: VP40 Retargets Viral Glycoprotein GP to the Basolateral Surface. Journal of Infectious Diseases, 2007, 196, S232-S236.	4.0	47
100	Profile and Persistence of the Virus-Specific Neutralizing Humoral Immune Response in Human Survivors of Sudan Ebolavirus (Gulu). Journal of Infectious Diseases, 2013, 208, 299-309.	4.0	47
101	Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. European Journal of Cell Biology, 2015, 94, 323-331.	3.6	47
102	Analysis of Ebola Virus Entry Into Macrophages. Journal of Infectious Diseases, 2015, 212, S247-S257.	4.0	47
103	Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Scientific Reports, 2016, 6, 34589.	3.3	47
104	Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells. PLoS Pathogens, 2014, 10, e1004463.	4.7	46
105	From hybridomas to a robust microalgal-based production platform: molecular design of a diatom secreting monoclonal antibodies directed against the Marburg virus nucleoprotein. Microbial Cell Factories, 2017, 16, 131.	4.0	45
106	The Importance of the NP: VP35 Ratio in Ebola Virus Nucleocapsid Formation. Journal of Infectious Diseases, 2011, 204, S878-S883.	4.0	43
107	RNA Binding of Ebola Virus VP30 Is Essential for Activating Viral Transcription. Journal of Virology, 2016, 90, 7481-7496.	3.4	43
108	SARS Vaccine Protective in Mice. Emerging Infectious Diseases, 2005, 11, 1312-1314.	4.3	42

#	Article	IF	CITATIONS
109	Sorting of Marburg Virus Surface Protein and Virus Release Take Place at Opposite Surfaces of Infected Polarized Epithelial Cells. Journal of Virology, 2001, 75, 1274-1283.	3.4	41
110	Ebola and Marburg virus matrix layers are locally ordered assemblies of VP40 dimers. ELife, 2020, 9, .	6.0	41
111	Vacuolar Protein Sorting Pathway Contributes to the Release of Marburg Virus. Journal of Virology, 2009, 83, 2327-2337.	3.4	39
112	Acute Ebola virus disease patient treatment and health-related quality of life in health care professionals: A controlled study. Journal of Psychosomatic Research, 2016, 83, 69-74.	2.6	39
113	Extracorporeal Virus Elimination for the Treatment of Severe Ebola Virus Disease - First Experience with Lectin Affinity Plasmapheresis. Blood Purification, 2014, 38, 286-291.	1.8	38
114	Comprehensive characterization of cellular immune responses following Ebola virus infection. Journal of Infectious Diseases, 2017, 215, jiw508.	4.0	38
115	Randomized, Blinded, Dose-Ranging Trial of an Ebola Virus Glycoprotein Nanoparticle Vaccine With Matrix-M Adjuvant in Healthy Adults. Journal of Infectious Diseases, 2020, 222, 572-582.	4.0	38
116	Role of the Transmembrane Domain of Marburg Virus Surface Protein GP in Assembly of the Viral Envelope. Journal of Virology, 2007, 81, 3942-3948.	3.4	37
117	Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane. Cellular Microbiology, 2012, 14, 182-197.	2.1	37
118	Characterization of severe acute respiratory syndrome coronavirus membrane protein. FEBS Letters, 2006, 580, 968-973.	2.8	34
119	Development of an Immunofiltrationâ€Based Antigenâ€Detection Assay for Rapid Diagnosis of Ebola Virus Infection. Journal of Infectious Diseases, 2007, 196, S184-S192.	4.0	34
120	Nipah Virus Matrix Protein Influences Fusogenicity and Is Essential for Particle Infectivity and Stability. Journal of Virology, 2016, 90, 2514-2522.	3.4	34
121	A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry. Journal of Virology, 2017, 91, .	3.4	33
122	Intranasal Administration of a Monoclonal Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Viruses, 2021, 13, 1498.	3.3	33
123	Production of monoclonal antibodies and development of an antigen capture ELISA directed against the envelope glycoprotein GP of Ebola virus. Medical Microbiology and Immunology, 2004, 193, 181-187.	4.8	32
124	Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells. Journal of General Virology, 2013, 94, 971-976.	2.9	32
125	Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus. Medical Microbiology and Immunology, 2016, 205, 173-183.	4.8	32
126	The molecular tweezer CLR01 inhibits Ebola and Zika virus infection. Antiviral Research, 2018, 152, 26-35.	4.1	31

#	Article	IF	CITATIONS
127	Development, characterization and use of monoclonal VP40-antibodies for the detection of Ebola virus. Journal of Virological Methods, 2003, 111, 21-28.	2.1	30
128	RNA binding specificity of Ebola virus transcription factor VP30. RNA Biology, 2016, 13, 783-798.	3.1	29
129	Dynamic phosphorylation of Ebola virus VP30 in NP-induced inclusion bodies. Virology, 2017, 512, 39-47.	2.4	29
130	Detectable Vesicular Stomatitis Virus (VSV)–Specific Humoral and Cellular Immune Responses Following VSV–Ebola Virus Vaccination in Humans. Journal of Infectious Diseases, 2019, 219, 556-561.	4.0	29
131	Field Evaluation of Capillary Blood Samples as a Collection Specimen for the Rapid Diagnosis of Ebola Virus Infection During an Outbreak Emergency. Clinical Infectious Diseases, 2015, 61, 669-675.	5.8	28
132	Cyclophilin inhibitors restrict Middle East respiratory syndrome coronavirus <i>via</i> interferon-λ <i>in vitro</i> and in mice. European Respiratory Journal, 2020, 56, 1901826.	6.7	28
133	Development and characterization of an indirect ELISA to detect SARS-CoV-2 spike protein-specific antibodies. Journal of Immunological Methods, 2021, 490, 112958.	1.4	28
134	Profiling the Native Specific Human Humoral Immune Response to Sudan Ebola Virus Strain Gulu by Chemiluminescence Enzyme-Linked Immunosorbent Assay. Vaccine Journal, 2012, 19, 1844-1852.	3.1	26
135	Assembly of the Marburg virus envelope. Cellular Microbiology, 2013, 15, 270-284.	2.1	26
136	Longitudinal antibody and T cell responses in Ebola virus disease survivors and contacts: an observational cohort study. Lancet Infectious Diseases, The, 2021, 21, 507-516.	9.1	26
137	Serine-Arginine Protein Kinase 1 Regulates Ebola Virus Transcription. MBio, 2020, 11, .	4.1	25
138	Nucleocapsid formation and RNA synthesis of Marburg virus is dependent on two coiled coil motifs in the nucleoprotein. Virology Journal, 2007, 4, 105.	3.4	24
139	Cleavage of the Junin Virus Nucleoprotein Serves a Decoy Function To Inhibit the Induction of Apoptosis during Infection. Journal of Virology, 2013, 87, 224-233.	3.4	24
140	The Nucleoprotein of Marburg Virus Is Target for Multiple Cellular Kinases. Virology, 1999, 255, 50-62.	2.4	23
141	Development and characterization of DNAzyme candidates demonstrating significant efficiency against human rhinoviruses. Journal of Allergy and Clinical Immunology, 2019, 143, 1403-1415.	2.9	23
142	Measles virus M protein-driven particle production does not involve the endosomal sorting complex required for transport (ESCRT) system. Journal of General Virology, 2010, 91, 1464-1472.	2.9	22
143	Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism. Viruses, 2014, 6, 1654-1671.	3.3	22
144	Adjuvant formulated virus-like particles expressing native-like forms of the Lassa virus envelope surface glycoprotein are immunogenic and induce antibodies with broadly neutralizing activity. Npj Vaccines, 2020, 5, 71.	6.0	21

#	Article	IF	CITATIONS
145	Genus-specific recruitment of filovirus ribonucleoprotein complexes into budding particles. Journal of General Virology, 2011, 92, 2900-2905.	2.9	18
146	Tetherin Inhibits Nipah Virus but Not Ebola Virus Replication in Fruit Bat Cells. Journal of Virology, 2019, 93, .	3.4	18
147	Inside the Cell: Assembly of Filoviruses. Current Topics in Microbiology and Immunology, 2017, 411, 353-380.	1.1	17
148	Postexposure Prophylaxis With rVSV-ZEBOV Following Exposure to a Patient With Ebola Virus Disease Relapse in the United Kingdom: An Operational, Safety, and Immunogenicity Report. Clinical Infectious Diseases, 2020, 71, 2872-2879.	5.8	17
149	The Cytoplasmic Domain of Marburg Virus GP Modulates Early Steps of Viral Infection. Journal of Virology, 2011, 85, 8188-8196.	3.4	16
150	Phosphorylation of Marburg Virus NP Region II Modulates Viral RNA Synthesis. Journal of Infectious Diseases, 2011, 204, S927-S933.	4.0	16
151	A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner. Journal of Virology, 2016, 90, 1444-1454.	3.4	16
152	The Marburg Virus Surface Protein GP Is Phosphorylated at Its Ectodomain. Virology, 2002, 295, 20-29.	2.4	15
153	Genome Sequence of Lassa Virus Isolated from the First Domestically Acquired Case in Germany. Genome Announcements, 2016, 4, .	0.8	15
154	Humoral and cellular immune response induced by rVSVΔG-ZEBOV-GP vaccine among frontline workers during the 2013–2016 West Africa Ebola outbreak in Guinea. Vaccine, 2020, 38, 4877-4884.	3.8	14
155	In Vitro Evaluation of Antisense RNA Efficacy against Filovirus Infection, by Use of Reverse Genetics. Journal of Infectious Diseases, 2007, 196, S382-S389.	4.0	13
156	A Fluorescently Labeled Marburg Virus Glycoprotein as a New Tool to Study Viral Transport and Assembly. Journal of Infectious Diseases, 2018, 218, S318-S326.	4.0	13
157	Marburg virus regulates the IRE1/XBP1-dependent unfolded protein response to ensure efficient viral replication. Emerging Microbes and Infections, 2019, 8, 1300-1313.	6.5	13
158	External quality assessment study for ebolavirus PCR-diagnostic promotes international preparedness during the 2014 – 2016 Ebola outbreak in West Africa. PLoS Neglected Tropical Diseases, 2017, 11, e0005570.	3.0	13
159	Recent advances in filovirus- and arenavirus-like particles. Future Virology, 2007, 2, 193-203.	1.8	12
160	The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells. Journal of General Virology, 2016, 97, 855-866.	2.9	12
161	The Integrity of the YxxL Motif of Ebola Virus VP24 Is Important for the Transport of Nucleocapsid-Like Structures and for the Regulation of Viral RNA Synthesis. Journal of Virology, 2020, 94, .	3.4	11
162	Analysis of the multifunctionality of Marburg virus VP40. Journal of General Virology, 2018, 99, 1614-1620.	2.9	11

#	Article	IF	CITATIONS
163	Structural insight into Marburg virus nucleoprotein–RNA complex formation. Nature Communications, 2022, 13, 1191.	12.8	11
164	Generation of therapeutic antisera for emerging viral infections. Npj Vaccines, 2018, 3, 42.	6.0	10
165	Ebola Virus Nucleocapsid-Like Structures Utilize Arp2/3 Signaling for Intracellular Long-Distance Transport. Cells, 2020, 9, 1728.	4.1	10
166	Hexamer phasing governs transcription initiation in the 3′-leader of Ebola virus. Rna, 2020, 26, 439-453.	3.5	10
167	Anti-Niemann Pick C1 Single-Stranded Oligonucleotides with Locked Nucleic Acids Potently Reduce Ebola Virus Infection InÂVitro. Molecular Therapy - Nucleic Acids, 2019, 16, 686-697.	5.1	9
168	Epitopes of Naturally Acquired and Vaccineâ€Induced Antiâ€Ebola Virus Glycoprotein Antibodies in Single Amino Acid Resolution. Biotechnology Journal, 2020, 15, 2000069.	3.5	9
169	An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus. Journal of General Virology, 2016, 97, 2494-2500.	2.9	9
170	Adverse effects of MVA-T7 on the transport of Marburg virus glycoprotein. Journal of Virological Methods, 2001, 91, 29-35.	2.1	8
171	Nonâ€canonical prolineâ€tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO Journal, 2021, 40, e105658.	7.8	8
172	No substantial preexisting B cell immunity against SARS-CoV-2 in healthy adults. IScience, 2022, 25, 103951.	4.1	8
173	Marburg Biosafety and Biosecurity Scale (MBBS): A Framework for Risk Assessment and Risk Communication. Health Security, 2015, 13, 88-95.	1.8	7
174	Characterization of the Filovirus-Resistant Cell Line SH-SY5Y Reveals Redundant Role of Cell Surface Entry Factors. Viruses, 2019, 11, 275.	3.3	7
175	Commentary: Management of Microbiological Samples in a Confirmed Case of Ebola Virus Disease: Constraints and Limitations. Journal of Clinical Microbiology, 2015, 53, 3396-3400.	3.9	6
176	RNA secondary structure at the transcription start site influences EBOV transcription initiation and replication in a length- and stability-dependent manner. RNA Biology, 2021, 18, 523-536.	3.1	6
177	The sphingosine kinase 1 activator, K6PC-5, attenuates Ebola virus infection. IScience, 2021, 24, 102266.	4.1	6
178	Regulation of VP30-Dependent Transcription by RNA Sequence and Structure in the Genomic Ebola Virus Promoter. Journal of Virology, 2021, 95, .	3.4	5
179	Identification and characterization of short leader and trailer RNAs synthesized by the Ebola virus RNA polymerase. PLoS Pathogens, 2021, 17, e1010002.	4.7	5
180	Proteomic landscape of SARS-CoV-2– and MERS-CoV–infected primary human renal epithelial cells. Life Science Alliance, 2022, 5, e202201371.	2.8	5

#	Article	IF	CITATIONS
181	Protective CD8+ T Cell Response Induced by Modified Vaccinia Virus Ankara Delivering Ebola Virus Nucleoprotein. Vaccines, 2022, 10, 533.	4.4	5
182	Cyclosporin A Reveals Potent Antiviral Effects in Preclinical Models of SARS-CoV-2 Infection. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 964-968.	5.6	5
183	Quantitation of SARS-CoV-2 neutralizing antibodies with a virus-free, authentic test. , 2022, 1, .		5
184	Ebola virus vaccines—preparing for the unexpected. Science, 2015, 349, 693-694.	12.6	4
185	A live-cell imaging system for visualizing the transport of Marburg virus nucleocapsid-like structures. Virology Journal, 2019, 16, 159.	3.4	3
186	Marburg Virus Replication and Nucleocapsid Formation: Different Jobs, Same Players. , 2002, , 89-107.		1
187	Complete Genome Sequence of an Ebola Virus Isolate Imported from Sierra Leone to Germany Determined by Circle Sequencing. Genome Announcements, 2016, 4, .	0.8	1
188	FP217MARBURG VIRUS & ACUTE KIDNEY INJURY. Nephrology Dialysis Transplantation, 2018, 33, i104-i104.	0.7	1
189	Be a Virus, See the World. , 2004, , 135-141.		1
190	Multiple Subviral Particle in Fluorecsence Microscopy Sequences. Informatik Aktuell, 2014, , 330-335.	0.6	0
191	Live-Cell Imaging of Filoviruses. Methods in Molecular Biology, 2017, 1628, 195-202.	0.9	0