
Aung Ko Win

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3733621/publications.pdf Version: 2024-02-01

Δυνό Κο Μίν

#	Article	IF	CITATIONS
1	Risk Stratification for Early-Onset Colorectal Cancer Using a Combination of Genetic and Environmental Risk Scores: An International Multi-Center Study. Journal of the National Cancer Institute, 2022, , .	6.3	15
2	Genetic Regulation of DNA Methylation Yields Novel Discoveries in GWAS of Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1068-1076.	2.5	1
3	Analysis in the Prospective Lynch Syndrome Database identifies sarcoma as part of the Lynch syndrome tumor spectrum. International Journal of Cancer, 2021, 148, 512-513.	5.1	9
4	Risk-reducing hysterectomy and bilateral salpingo-oophorectomy in female heterozygotes of pathogenic mismatch repair variants: a Prospective Lynch Syndrome Database report. Genetics in Medicine, 2021, 23, 705-712.	2.4	28
5	Associations of Height With the Risks of Colorectal and Endometrial Cancer in Persons With Lynch Syndrome. American Journal of Epidemiology, 2021, 190, 230-238.	3.4	2
6	Exposure to household air pollution over 10â€years is related to asthma and lung function decline. European Respiratory Journal, 2021, 57, 2000602.	6.7	18
7	Evaluating the utility of tumour mutational signatures for identifying hereditary colorectal cancer and polyposis syndrome carriers. Gut, 2021, 70, 2138-2149.	12.1	27
8	Germline and Tumor Sequencing as a Diagnostic Tool To Resolve Suspected Lynch Syndrome. Journal of Molecular Diagnostics, 2021, 23, 358-371.	2.8	12
9	Response to Li and Hopper. American Journal of Human Genetics, 2021, 108, 527-529.	6.2	5
10	Assessment of a Polygenic Risk Score for Colorectal Cancer to Predict Risk of Lynch Syndrome Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab022.	2.9	15
11	Uptake of hysterectomy and bilateral salpingo-oophorectomy in carriers of pathogenic mismatch repair variants: a Prospective Lynch Syndrome Database report. European Journal of Cancer, 2021, 148, 124-133.	2.8	11
12	Nongenetic Determinants of Risk forÂEarly-Onset Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab029.	2.9	39
13	DNA Methylation Signatures and the Contribution of Age-Associated Methylomic Drift to Carcinogenesis in Early-Onset Colorectal Cancer. Cancers, 2021, 13, 2589.	3.7	18
14	A Meta-Analysis of Obesity and Risk of Colorectal Cancer in Patients with Lynch Syndrome: The Impact of Sex and Genetics. Nutrients, 2021, 13, 1736.	4.1	10
15	No Difference in Penetrance between Truncating and Missense/Aberrant Splicing Pathogenic Variants in MLH1 and MSH2: A Prospective Lynch Syndrome Database Study. Journal of Clinical Medicine, 2021, 10, 2856.	2.4	11
16	Variation in the risk of colorectal cancer in families with Lynch syndrome: a retrospective cohort study. Lancet Oncology, The, 2021, 22, 1014-1022.	10.7	58
17	DNA methylation-based signature of CD8+ tumor-infiltrating lymphocytes enables evaluation of immune response and prognosis in colorectal cancer. , 2021, 9, e002671.		37
18	32Do the risks of Lynch syndrome-related cancers depend on the parent-of-origin of the mutation?. International Journal of Epidemiology, 2021, 50, .	1.9	0

#	Article	IF	CITATIONS
19	Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genetics in Medicine, 2020, 22, 15-25.	2.4	365
20	Cumulative Burden of Colorectal Cancer–Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer. Gastroenterology, 2020, 158, 1274-1286.e12.	1.3	110
21	Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. American Journal of Human Genetics, 2020, 107, 432-444.	6.2	124
22	Pathways to a cancer-free future: a protocol for modelled evaluations to minimise the future burden of colorectal cancer in Australia. BMJ Open, 2020, 10, e036475.	1.9	1
23	Monoallelic NTHL1 Loss-of-Function Variants and Risk of Polyposis and Colorectal Cancer. Gastroenterology, 2020, 159, 2241-2243.e6.	1.3	20
24	Mendelian Randomization of Circulating Polyunsaturated Fatty Acids and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 860-870.	2.5	26
25	Do the risks of Lynch syndrome-related cancers depend on the parent of origin of the mutation?. Familial Cancer, 2020, 19, 215-222.	1.9	1
26	A New Comprehensive Colorectal Cancer Risk Prediction Model Incorporating Family History, Personal Characteristics, and Environmental Factors. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 549-557.	2.5	25
27	Genetic Predictors of Circulating 25-Hydroxyvitamin D and Prognosis after Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1128-1134.	2.5	1
28	Potential impact of family history–based screening guidelines on the detection of earlyâ€onset colorectal cancer. Cancer, 2020, 126, 3013-3020.	4.1	45
29	Early-Age-of-Onset Colorectal Carcinoma: An Emerging Public Health Issue. , 2020, , 1-9.		0
30	Genetic Variants in the Regulatory T cell–Related Pathway and Colorectal Cancer Prognosis. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2719-2728.	2.5	1
31	Novel Common Genetic Susceptibility Loci for Colorectal Cancer. Journal of the National Cancer Institute, 2019, 111, 146-157.	6.3	129
32	Type 2 diabetes mellitus, blood cholesterol, triglyceride and colorectal cancer risk in Lynch syndrome. British Journal of Cancer, 2019, 121, 869-876.	6.4	10
33	Ability of known susceptibility SNPs to predict colorectal cancer risk for persons with and without a family history. Familial Cancer, 2019, 18, 389-397.	1.9	23
34	Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nature Communications, 2019, 10, 2154.	12.8	172
35	Mortality after breast cancer as a function of time since diagnosis by estrogen receptor status and age at diagnosis. International Journal of Cancer, 2019, 145, 3207-3217.	5.1	14
36	Risks of Colorectal Cancer and Cancer-Related Mortality in Familial Colorectal Cancer Type X and Lynch Syndrome Families. Journal of the National Cancer Institute, 2019, 111, 675-683.	6.3	12

Aung Ko Win

#	Article	IF	CITATIONS
37	Discovery of common and rare genetic risk variants for colorectal cancer. Nature Genetics, 2019, 51, 76-87.	21.4	377
38	Earlyâ€life exposure to sibling modifies the relationship between <i>CD14</i> polymorphisms and allergic sensitization. Clinical and Experimental Allergy, 2019, 49, 331-340.	2.9	2
39	Cohort Profile: The Colon Cancer Family Registry Cohort (CCFRC). International Journal of Epidemiology, 2018, 47, 387-388i.	1.9	40
40	Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Familial Cancer, 2018, 17, 91-100.	1.9	21
41	Genomeâ€wide association study and metaâ€analysis in Northern European populations replicate multiple colorectal cancer risk loci. International Journal of Cancer, 2018, 142, 540-546.	5.1	26
42	Risk of colorectal cancer for carriers of a germ-line mutation in POLE or POLD1. Genetics in Medicine, 2018, 20, 890-895.	2.4	49
43	Cancer Risks for <i>PMS2</i> -Associated Lynch Syndrome. Journal of Clinical Oncology, 2018, 36, 2961-2968.	1.6	147
44	Genetic susceptibility markers for a breast-colorectal cancer phenotype: Exploratory results from genome-wide association studies. PLoS ONE, 2018, 13, e0196245.	2.5	9
45	The International Mismatch Repair Consortium. , 2018, , 479-495.		0
46	Mendelian randomisation study of age at menarche and age at menopause and the risk of colorectal cancer. British Journal of Cancer, 2018, 118, 1639-1647.	6.4	16
47	284 - Potential Impact of Family History Based Screening Guidelines on Early Cancer Detection Among Individuals at Risk for Young Onset Colorectal Cancer. Gastroenterology, 2018, 154, S-71.	1.3	0
48	Genetic and Environmental Modifiers of Cancer Risk in Lynch Syndrome. , 2018, , 67-89.		4
49	Interaction between polymorphisms in aspirin metabolic pathways, regular aspirin use and colorectal cancer risk: A case-control study in unselected white European populations. PLoS ONE, 2018, 13, e0192223.	2.5	5
50	Physical activity and the risk of colorectal cancer in Lynch syndrome. International Journal of Cancer, 2018, 143, 2250-2260.	5.1	23
51	The Colon Cancer Family Registry Cohort. , 2018, , 427-459.		3
52	Towards personalised risk assessment and clinical management: A worldwide study of age-, sex-, geographic region-, gene- and cancer-specific risks for Lynch syndrome Journal of Clinical Oncology, 2018, 36, 1526-1526.	1.6	0
53	Abstract 1238: International comparison of cancer risks for Lynch syndrome. , 2018, , .		0
54	Household Exposures, Glutathione S-Transferase Genes and Asthma Risk in Middle-Age. ISEE Conference Abstracts, 2018, 2018, .	0.0	0

Aung Ko Win

#	Article	IF	CITATIONS
55	Tumor testing to identify lynch syndrome in two Australian colorectal cancer cohorts. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 427-438.	2.8	47
56	Modeling of Successive Cancer Risks in Lynch Syndrome Families in the Presence of Competing Risks Using Copulas. Biometrics, 2017, 73, 271-282.	1.4	5
57	Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer. International Journal of Cancer, 2017, 140, 2701-2708.	5.1	76
58	The interaction between farming/rural environment and TLR2, TLR4, TLR6 and CD14 genetic polymorphisms in relation to early- and late-onset asthma. Scientific Reports, 2017, 7, 43681.	3.3	27
59	Prediagnostic alcohol consumption and colorectal cancer survival: The Colon Cancer Family Registry. Cancer, 2017, 123, 1035-1043.	4.1	21
60	Risk factors for metachronous colorectal cancer or polyp: A systematic review and metaâ€analysis. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 301-326.	2.8	13
61	Longâ€ŧerm weight loss after colorectal cancer diagnosis is associated with lower survival: The Colon Cancer Family Registry. Cancer, 2017, 123, 4701-4708.	4.1	20
62	Pro-inflammatory fatty acid profile and colorectal cancer risk: A Mendelian randomisation analysis. European Journal of Cancer, 2017, 84, 228-238.	2.8	81
63	Targeted sequencing of 36 known or putative colorectal cancer susceptibility genes. Molecular Genetics & Genomic Medicine, 2017, 5, 553-569.	1.2	32
64	Testing for Gene-Environment Interactions Using a Prospective Family Cohort Design: Body Mass Index in Early and Later Adulthood and Risk of Breast Cancer. American Journal of Epidemiology, 2017, 185, 487-500.	3.4	5
65	Findings in young adults at colonoscopy from a hospital service database audit. BMC Gastroenterology, 2017, 17, 56.	2.0	14
66	Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 366-375.	2.5	37
67	Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 404-412.	2.5	341
68	Germline miRNA DNA variants and the risk of colorectal cancer by subtype. Genes Chromosomes and Cancer, 2017, 56, 177-184.	2.8	7
69	Reproductive factors as risk modifiers of breast cancer in <i>BRCA</i> mutation carriers and high-risk non-carriers. Oncotarget, 2017, 8, 102110-102118.	1.8	23
70	Abstract PR05: Does a comprehensive family history of colorectal cancer improve risk prediction?. , 2017, , .		3
71	Abstract PR10: Development of a comprehensive colorectal cancer risk prediction tool (CRiPT) incorporating known and unknown major genes and polygenes. , 2017, , .		0
72	Abstract B04: Development of a comprehensive colorectal cancer risk prediction tool (CRiPT) incorporating known and unknown major genes and polygenes. , 2017, , .		0

#	Article	IF	CITATIONS
73	Abstract 4266: Double somatic mutations as a cause of tumor mismatch repair-deficiency in population-based colorectal and endometrial cancer with Lynch-like syndrome. , 2017, , .		1
74	Reducing the polyp burden in serrated polyposis by serial colonoscopy: the impact of nationally coordinated community surveillance. New Zealand Medical Journal, 2017, 130, 57-67.	0.5	4
75	Risk factors for metachronous colorectal cancer following a primary colorectal cancer: A prospective cohort study. International Journal of Cancer, 2016, 139, 1081-1090.	5.1	32
76	Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer. British Journal of Cancer, 2016, 115, 266-272.	6.4	57
77	Cholecystectomy and the risk of colorectal cancer by tumor mismatch repair deficiency status. International Journal of Colorectal Disease, 2016, 31, 1451-1457.	2.2	6
78	The Experience of Extended Bowel Resection in Individuals With a High Metachronous Colorectal Cancer Risk: A Qualitative Study. Oncology Nursing Forum, 2016, 43, 444-452.	1.2	5
79	Su1725 Characteristics of Advanced Neoplasia of the Large Bowel in Young Adults: Results From a Hospital Colonoscopy Service Database. Gastrointestinal Endoscopy, 2016, 83, AB411-AB412.	1.0	0
80	Multivitamin, calcium and folic acid supplements and the risk of colorectal cancer in Lynch syndrome. International Journal of Epidemiology, 2016, 45, 940-953.	1.9	27
81	Common variants in the obesity-associated genes FTO and MC4R are not associated with risk of colorectal cancer. Cancer Epidemiology, 2016, 44, 1-4.	1.9	12
82	Response: Table 1 Journal of the National Cancer Institute, 2016, 108, djv385.	6.3	1
83	SNP rs16906252C>T Is an Expression and Methylation Quantitative Trait Locus Associated with an Increased Risk of Developing <i>MGMT</i> -Methylated Colorectal Cancer. Clinical Cancer Research, 2016, 22, 6266-6277.	7.0	22
84	Risk of extracolonic cancers for people with biallelic and monoallelic mutations in <i>MUTYH</i> . International Journal of Cancer, 2016, 139, 1557-1563.	5.1	107
85	Determining the familial risk distribution of colorectal cancer: a data mining approach. Familial Cancer, 2016, 15, 241-251.	1.9	6
86	Associations of 5HTTLPR polymorphism with major depressive disorder and alcohol dependence: A systematic review and meta-analysis. Australian and New Zealand Journal of Psychiatry, 2016, 50, 842-857.	2.3	37
87	Variation at 2q35 (<i>PNKD</i> and <i>TMBIM1</i>) influences colorectal cancer risk and identifies a pleiotropic effect with inflammatory bowel disease. Human Molecular Genetics, 2016, 25, 2349-2359.	2.9	37
88	Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening. Future Oncology, 2016, 12, 503-513.	2.4	42
89	Germline mutations in <i>PMS2</i> and <i>MLH1</i> in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort. BMJ Open, 2016, 6, e010293.	1.9	33
90	Risk Prediction Models for Colorectal Cancer: A Systematic Review. Cancer Prevention Research, 2016, 9, 13-26.	1.5	142

#	Article	IF	CITATIONS
91	GWASeq: targeted re-sequencing follow up to GWAS. BMC Genomics, 2016, 17, 176.	2.8	7
92	Comparison of Prediction Models for Lynch Syndrome Among Individuals With Colorectal Cancer. Journal of the National Cancer Institute, 2016, 108, .	6.3	29
93	PMS2 monoallelic mutation carriers: the known unknown. Genetics in Medicine, 2016, 18, 13-19.	2.4	51
94	Abstract 3425: Prediagnostic alcohol consumption and colorectal cancer survival: the Colon Cancer Family Registry. , 2016, , .		1
95	Abstract 2552: Influence of age, sex, colorectal cancer status, and mutation carrier status on physical activity in families with Lynch syndrome. , 2016, , .		0
96	2079 Risk factors for metachronous colorectal cancer following a primary colorectal cancer: A prospective cohort study. European Journal of Cancer, 2015, 51, S355.	2.8	0
97	1054 Risk of extracolonic cancers for people with biallelic and monoallelic mutations in MUTYH. European Journal of Cancer, 2015, 51, S163.	2.8	0
98	Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1. Scientific Reports, 2015, 5, 17369.	3.3	35
99	Incidence and prevalence of nonâ€melanoma skin cancer in <scp>A</scp> ustralia: A systematic review. Australasian Journal of Dermatology, 2015, 56, 258-267.	0.7	164
100	Fertility after youngâ€onset colorectal cancer: a study of subjects with Lynch syndrome. Colorectal Disease, 2015, 17, 787-793.	1.4	17
101	Lynch syndrome and cervical cancer. International Journal of Cancer, 2015, 137, 2757-2761.	5.1	13
102	Family History and Risk of Endometrial Cancer. Obstetrics and Gynecology, 2015, 125, 89-98.	2.4	72
103	Mendelian randomization study of height and risk of colorectal cancer. International Journal of Epidemiology, 2015, 44, 662-672.	1.9	55
104	Mendelian Randomization Study of Body Mass Index and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1024-1031.	2.5	67
105	Prediagnostic Physical Activity and Colorectal Cancer Survival: Overall and Stratified by Tumor Characteristics. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1130-1137.	2.5	30
106	<i>PIK3CA</i> Somatic Mutation Status in Relation to Patient and Tumor Factors in Racial/Ethnic Minorities with Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1046-1051.	2.5	17
107	Association between Body Mass Index and Mortality for Colorectal Cancer Survivors: Overall and by Tumor Molecular Phenotype. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1229-1238.	2.5	44
108	Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene. Familial Cancer, 2015, 14, 575-583.	1.9	11

#	Article	IF	CITATIONS
109	Mutation Spectrum and Risk of Colorectal Cancer in African American Families with Lynch Syndrome. Gastroenterology, 2015, 149, 1446-1453.	1.3	46
110	Aspirin, Ibuprofen, and the Risk of Colorectal Cancer in Lynch Syndrome. Journal of the National Cancer Institute, 2015, 107, djv170.	6.3	80
111	A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Scientific Reports, 2015, 5, 10442.	3.3	109
112	Female Hormonal Factors and the Risk of Endometrial Cancer in Lynch Syndrome. JAMA - Journal of the American Medical Association, 2015, 314, 61.	7.4	68
113	Childhood cancers in families with and without Lynch syndrome. Familial Cancer, 2015, 14, 545-551.	1.9	8
114	Rising incidence of earlyâ€onset colorectal cancer in <scp>A</scp> ustralia over two decades: Report and review. Journal of Gastroenterology and Hepatology (Australia), 2015, 30, 6-13.	2.8	119
115	Breast cancer risk for Korean women with germline mutations in BRCA1 and BRCA2. Breast Cancer Research and Treatment, 2015, 152, 659-665.	2.5	18
116	Short-Term Risk of Colorectal Cancer in Individuals With Lynch Syndrome: A Meta-Analysis. Journal of Clinical Oncology, 2015, 33, 326-331.	1.6	37
117	Role of tumour molecular and pathology features to estimate colorectal cancer risk for first-degree relatives. Gut, 2015, 64, 101-110.	12.1	40
118	Genetic variants within the hTERT gene and the risk of colorectal cancer in Lynch syndrome. Genes and Cancer, 2015, 6, 445-451.	1.9	6
119	Exposure to siblings in early life modifies the association between <i>CD14</i> polymorphisms and allergic sensitization in adult life. , 2015, , .		0
120	Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome). The Application of Clinical Genetics, 2014, 7, 183.	3.0	68
121	Risk of Prostate Cancer in Lynch Syndrome: A Systematic Review and Meta-analysis. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 437-449.	2.5	104
122	High prevalence of mismatch repair deficiency in prostate cancers diagnosed in mismatch repair gene mutation carriers from the colon cancer family registry. Familial Cancer, 2014, 13, 573-582.	1.9	44
123	Re: Microsatellite Instability and BRAF Mutation Testing in Colorectal Cancer Prognostication. Journal of the National Cancer Institute, 2014, 106, dju180-dju180.	6.3	6
124	Family History of Colorectal Cancer Is Not Associated with Colorectal Cancer Survival Regardless of Microsatellite Instability Status. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1700-1704.	2.5	9
125	Genetic variation in <i>UGT</i> genes modify the associations of NSAIDs with risk of colorectal cancer: Colon cancer family registry. Genes Chromosomes and Cancer, 2014, 53, 568-578.	2.8	25
126	Perceived Versus Predicted Risks of Colorectal Cancer and Selfâ€Reported Colonoscopies by Members of Mismatch Repair Gene Mutationâ€Carrying Families Who Have Declined Genetic Testing. Journal of Genetic Counseling, 2014, 23, 79-88.	1.6	8

#	Article	IF	CITATIONS
127	Risk of Colorectal Cancer for Carriers of Mutations in MUTYH, WithÂand Without a Family History of Cancer. Gastroenterology, 2014, 146, 1208-1211.e5.	1.3	180
128	Should the grading of colorectal adenocarcinoma include microsatellite instability status?. Human Pathology, 2014, 45, 2077-2084.	2.0	44
129	Characterisation of Familial Colorectal Cancer Type X, Lynch syndrome, and non-familial colorectal cancer. British Journal of Cancer, 2014, 111, 598-602.	6.4	38
130	Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Human Molecular Genetics, 2014, 23, 4729-4737.	2.9	128
131	Fertility and apparent genetic anticipation in Lynch syndrome. Familial Cancer, 2014, 13, 369-374.	1.9	3
132	Colorectal cancer and self-reported tooth agenesis. Hereditary Cancer in Clinical Practice, 2014, 12, 7.	1.5	16
133	Does risk of endometrial cancer for women without a germline mutation in a DNA mismatch repair gene depend on family history of endometrial cancer or colorectal cancer?. Gynecologic Oncology, 2014, 133, 287-292.	1.4	20
134	Abstract LB-276: Prospective study of body mass index and adult weight change with colorectal cancer survival, overall and by tumor microsatellite instability status. , 2014, , .		0
135	Risk of breast cancer in Lynch syndrome: a systematic review. Breast Cancer Research, 2013, 15, R27.	5.0	109
136	Are the common genetic variants associated with colorectal cancer risk for DNA mismatch repair gene mutation carriers?. European Journal of Cancer, 2013, 49, 1578-1587.	2.8	31
137	Expression of MUC2, MUC5AC, MUC5B, and MUC6 mucins in colorectal cancers and their association with the CpG island methylator phenotype. Modern Pathology, 2013, 26, 1642-1656.	5.5	127
138	Differential effects of phosphate binders on pre-dialysis serum bicarbonate in end-stage kidney disease patients on maintenance haemodialysis. BMC Nephrology, 2013, 14, 205.	1.8	7
139	Risks of Colorectal and Other Cancers After Endometrial Cancer for Women With Lynch Syndrome. Journal of the National Cancer Institute, 2013, 105, 274-279.	6.3	93
140	Cancer Risks for <i>MLH1</i> and <i>MSH2</i> Mutation Carriers. Human Mutation, 2013, 34, 490-497.	2.5	201
141	KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers. British Journal of Cancer, 2013, 108, 1757-1764.	6.4	191
142	Risk of Metachronous Colon Cancer Following Surgery for Rectal Cancer in Mismatch Repair Gene Mutation Carriers. Annals of Surgical Oncology, 2013, 20, 1829-1836.	1.5	103
143	Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Modern Pathology, 2013, 26, 825-834.	5.5	126
144	Association between hypermethylation of DNA repetitive elements in white blood cell DNA and early-onset colorectal cancer. Epigenetics, 2013, 8, 748-755.	2.7	41

#	Article	IF	CITATIONS
145	Germline HOXB13 p.Gly84Glu mutation and risk of colorectal cancer. Cancer Epidemiology, 2013, 37, 424-427.	1.9	24
146	Family History of Colorectal Cancer in <i>BRAF</i> p.V600E-Mutated Colorectal Cancer Cases. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 917-926.	2.5	24
147	Colon and Rectal Cancer Survival by Tumor Location and Microsatellite Instability. Diseases of the Colon and Rectum, 2013, 56, 937-944.	1.3	81
148	BRAFV600E Immunohistochemistry Facilitates Universal Screening of Colorectal Cancers for Lynch Syndrome. American Journal of Surgical Pathology, 2013, 37, 1592-1602.	3.7	125
149	Response. Journal of the National Cancer Institute, 2013, 105, 1837-1838.	6.3	1
150	Is the reported modifying effect of 8q23.3 and 11q23.1 on colorectal cancer risk for <i>MLH1</i> mutation carriers valid?. International Journal of Cancer, 2013, 133, 1762-1763.	5.1	2
151	Criteria and prediction models for mismatch repair gene mutations: a review. Journal of Medical Genetics, 2013, 50, 785-793.	3.2	27
152	Multiplicity and Molecular Heterogeneity of Colorectal Carcinomas in Individuals With Serrated Polyposis. American Journal of Surgical Pathology, 2013, 37, 434-442.	3.7	39
153	PIK3CA Activating Mutation in Colorectal Carcinoma: Associations with Molecular Features and Survival. PLoS ONE, 2013, 8, e65479.	2.5	117
154	Germline Mutations in the Polyposis-Associated Genes BMPR1A, SMAD4, PTEN, MUTYH and GREM1 Are Not Common in Individuals with Serrated Polyposis Syndrome. PLoS ONE, 2013, 8, e66705.	2.5	27
155	Abstract 4831: Additive and multiplicative gene-environment interactions for colorectal cancer risk , 2013, , .		0
156	Abstract 4842: Hazard ratio for colorectal cancer risk in Lynch syndrome is inversely associated with age , 2013, , .		0
157	Is prostate cancer a Lynch syndrome cancer?. Asian Journal of Andrology, 2013, 15, 588-589.	1.6	2
158	Kaplan–Meier failure estimate for metachronous colorectal cancer risk is clinically relevant. Gut, 2012, 61, 783.2-784.	12.1	0
159	<i>BRAF</i> Mutation Status and Survival after Colorectal Cancer Diagnosis According to Patient and Tumor Characteristics. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1792-1798.	2.5	113
160	Immunohistochemical testing of conventional adenomas for loss of expression of mismatch repair proteins in Lynch syndrome mutation carriers: a case series from the Australasian site of the colon cancer family registry. Modern Pathology, 2012, 25, 722-730.	5.5	73
161	Cancer Risks for the Relatives of Colorectal Cancer Cases with a Methylated <i>MLH1</i> Promoter Region: Data from the Colorectal Cancer Family Registry. Cancer Prevention Research, 2012, 5, 328-335.	1.5	12
162	Colorectal and Other Cancer Risks for Carriers and Noncarriers From Families With a DNA Mismatch Repair Gene Mutation: A Prospective Cohort Study. Journal of Clinical Oncology, 2012, 30, 958-964.	1.6	286

#	Article	IF	CITATIONS
163	Using tumour pathology to identify people at high genetic risk of breast and colorectal cancers. Pathology, 2012, 44, 89-98.	0.6	7
164	Phenotype and Polyp Landscape in Serrated Polyposis Syndrome. American Journal of Surgical Pathology, 2012, 36, 876-882.	3.7	85
165	Risks of Primary Extracolonic Cancers Following Colorectal Cancer in Lynch Syndrome. Journal of the National Cancer Institute, 2012, 104, 1363-1372.	6.3	193
166	Su1851 Family History and Pathology Features in Early-Onset Colorectal Cancer Cases With a BRAF P.V600e Mutation. Gastroenterology, 2012, 142, S-519.	1.3	0
167	Risk Prediction Models for Colorectal Cancer: A Review. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 398-410.	2.5	84
168	Cancer Risks for Relatives of Patients With Serrated Polyposis. American Journal of Gastroenterology, 2012, 107, 770-778.	0.4	80
169	Increased Cancer Risks in Myotonic Dystrophy. Mayo Clinic Proceedings, 2012, 87, 130-135.	3.0	80
170	The Australasian Colorectal Cancer Family Registry. Medical Journal of Australia, 2012, 197, 480-481.	1.7	13
171	Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut, 2011, 60, 950-957.	12.1	227
172	Metachronous colorectal cancer risk for mismatch repair gene mutation carriers – the advantage of more extensive surgery. Hereditary Cancer in Clinical Practice, 2011, 9, O1.	1.5	2
173	Body mass index in early adulthood and colorectal cancer risk for carriers and non-carriers of germline mutations in DNA mismatch repair genes. British Journal of Cancer, 2011, 105, 162-169.	6.4	50
174	Association between monoallelic MUTYH mutation and colorectal cancer risk: a meta-regression analysis. Familial Cancer, 2011, 10, 1-9.	1.9	59
175	Cancer risks for monoallelic <i>MUTYH</i> mutation carriers with a family history of colorectal cancer. International Journal of Cancer, 2011, 129, 2256-2262.	5.1	93
176	Estimates of familial risks from family data are biased when ascertainment of families is not independent of family history. Gut, 2011, 60, 1162-1163.	12.1	3
177	Determining the frequency of de novo germline mutations in DNA mismatch repair genes. Journal of Medical Genetics, 2011, 48, 530-534.	3.2	40
178	Body Mass Index in Early Adulthood and Endometrial Cancer Risk for Mismatch Repair Gene Mutation Carriers. Obstetrics and Gynecology, 2011, 117, 899-905.	2.4	23
179	Factors associated with type I and type II endometrial cancers in women with a germ-line mutation in a mismatch repair gene Journal of Clinical Oncology, 2011, 29, 1521-1521.	1.6	1
180	Colorectal cancer cases with de novo germ-line mutations in <i>MLH1</i> , <i>MSH2</i> , and <i>MSH6</i> from the Colon Cancer Family Registry Journal of Clinical Oncology, 2011, 29, 3538-3538.	1.6	2

#	Article	IF	CITATIONS
181	Phenotypic diversity in patients with multiple serrated polyps: a genetics clinic study. International Journal of Colorectal Disease, 2010, 25, 703-712.	2.2	48
182	A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. British Journal of Cancer, 2010, 103, 1875-1884.	6.4	107
183	Risk Factors for Colorectal Cancer in Patients with Multiple Serrated Polyps: A Cross-Sectional Case Series from Genetics Clinics. PLoS ONE, 2010, 5, e11636.	2.5	68
184	Association of Lynch syndrome and risk of invasive cervical cancer Journal of Clinical Oncology, 2010, 28, 1501-1501.	1.6	1
185	Metachronous colorectal cancer in mismatch repair gene mutation carriers: The advantage of more extensive surgery Journal of Clinical Oncology, 2010, 28, 3515-3515.	1.6	0