Evan Z Macosko

List of Publications by Citations

Source: https://exaly.com/author-pdf/3733614/evan-z-macosko-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 26 10,810 52 h-index g-index citations papers 68 16,242 6.17 34.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
52	Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. <i>Cell</i> , 2015 , 161, 1202-1214	56.2	3873
51	Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics. <i>Cell</i> , 2016 , 166, 1308-1323.e30	56.2	675
50	Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. <i>Science</i> , 2019 , 363, 1463-1467	33.3	669
49	Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. <i>Immunity</i> , 2019 , 50, 253-271.e6	32.3	644
48	Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. <i>Cell</i> , 2018 , 174, 1015	- 563 0.	e 66 8
47	Cell diversity and network dynamics in photosensitive human brain organoids. <i>Nature</i> , 2017 , 545, 48-53	50.4	609
46	A molecular census of arcuate hypothalamus and median eminence cell types. <i>Nature Neuroscience</i> , 2017 , 20, 484-496	25.5	401
45	Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. <i>Nature Genetics</i> , 2018 , 50, 621-629	36.3	400
44	Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity. <i>Cell</i> , 2019 , 177, 1873-1887.e17	56.2	378
43	A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. <i>Nature</i> , 2009 , 458, 1171-5	50.4	350
42	Local translation of RhoA regulates growth cone collapse. <i>Nature</i> , 2005 , 436, 1020-1024	50.4	347
41	Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. <i>Cell</i> , 2013 , 154, 1023-1035	56.2	230
40	Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. <i>Science</i> , 2012 , 338, 540-3	33.3	179
39	Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. <i>Neuron</i> , 2009 , 61, 692-9	13.9	177
38	Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. <i>Science</i> , 2008 , 322, 460-4	33.3	166
37	Functional and selective RNA interference in developing axons and growth cones. <i>Journal of Neuroscience</i> , 2006 , 26, 5727-32	6.6	141
36	Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. <i>Nature Biotechnology</i> , 2021 , 39, 313-319	44.5	120

35	Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. <i>Neuron</i> , 2012 , 75, 585-92	13.9	100
34	Genetically Distinct Parallel Pathways in the Entopeduncular Nucleus for Limbic and Sensorimotor Output of the Basal Ganglia. <i>Neuron</i> , 2017 , 94, 138-152.e5	13.9	95
33	Balancing selection shapes density-dependent foraging behaviour. <i>Nature</i> , 2016 , 539, 254-258	50.4	89
32	Robust decomposition of cell type mixtures in spatial transcriptomics. Nature Biotechnology, 2021,	44.5	64
31	A multimodal cell census and atlas of the mammalian primary motor cortex. <i>Nature</i> , 2021 , 598, 86-102	50.4	44
30	Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse		33
29	Molecular logic of cellular diversification in the mouse cerebral cortex. <i>Nature</i> , 2021 , 595, 554-559	50.4	33
28	Comparative cellular analysis of motor cortex in human, marmoset and mouse. <i>Nature</i> , 2021 , 598, 111-	l 15 9.4	31
27	A transcriptomic atlas of the mouse cerebellum reveals regional specializations and novel cell types		28
26	Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. <i>Nature Methods</i> , 2021 , 18, 1352-1362	21.6	25
25	A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. <i>Nature</i> , 2021 , 598, 103-	150.4	23
24	An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types		23
23	Sensitive spatial genome wide expression profiling at cellular resolution		18
22	Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with Tangram		17
21	Jointly defining cell types from multiple single-cell datasets using LIGER. <i>Nature Protocols</i> , 2020 , 15, 3632-3662	18.8	17
20	A transcriptomic atlas of mouse cerebellar cortex comprehensivelyIdefines cell types. <i>Nature</i> , 2021 , 598, 214-219	50.4	16
19	Robust decomposition of cell type mixtures in spatial transcriptomics		16
18	A multimodal cell census and atlas of the mammalian primary motor cortex		12

17	Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease <i>Nature Neuroscience</i> , 2022 , 25, 588-595	25.5	11
16	Single Cell Sequencing Reveals Glial Specific Responses to Tissue Processing & Enzymatic Dissociation in Mice and Humans		10
15	An atlas of healthy and injured cell states and niches in the human kidney		10
14	Dissecting mammalian spermatogenesis using spatial transcriptomics. <i>Cell Reports</i> , 2021 , 37, 109915	10.6	8
13	Molecular Logic of Cellular Diversification in the Mammalian Cerebral Cortex		8
12	Genetics. Our fallen genomes. <i>Science</i> , 2013 , 342, 564-5	33.3	6
11	Spatial genomics enables multi-modal study of clonal heterogeneity in tissues Nature, 2021,	50.4	6
10	Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin. <i>Nature Communications</i> , 2021 , 12, 6271	17.4	6
9	Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain <i>Nature Neuroscience</i> , 2022 , 25, 306-316	25.5	6
8	Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells. <i>Nature Communications</i> , 2021 , 12, 5491	17.4	4
7	High Resolution Slide-seqV2 Spatial Transcriptomics Enables Discovery of Disease-Specific Cell Neighborhoods and Pathways		3
6	Dissecting Mammalian Spermatogenesis Using Spatial Transcriptomics		3
5	Fresh Frozen Mouse Brain Preparation (for Single Nuclei Sequencing) v1		2
4	Candelabrum cells are molecularly distinct, ubiquitous interneurons of the cerebellar cortex with specialized circuit properties		2
3	Single-cell RNA sequencing at isoform resolution. <i>Nature Biotechnology</i> , 2020 , 38, 697-698	44.5	1
2	Voices of biotech research. <i>Nature Biotechnology</i> , 2021 , 39, 281-286	44.5	1
1	High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways <i>IScience</i> , 2022 , 25, 104097	6.1	1