Maria R Lukatskaya

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3733569/maria-r-lukatskaya-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

47	19,097	28	52
papers	citations	h-index	g-index
52 ext. papers	23,151 ext. citations	15.9 avg, IF	7.3 L-index

#	Paper	IF	Citations
47	Water-in-Salt LiTFSI Aqueous Electrolytes. 1. Liquid Structure from Combined Molecular Dynamics Simulation and Experimental Studies. <i>Journal of Physical Chemistry B</i> , 2021 , 125, 4501-4513	3.4	16
46	Can Anions Be Inserted into MXene?. Journal of the American Chemical Society, 2021, 143, 12552-12559	16.4	19
45	Bottom-Up Design of Configurable Oligomer-Derived Conducting Metallopolymers for High-Power Electrochemical Energy Storage. <i>ACS Nano</i> , 2021 , 15, 15422-15428	16.7	1
44	Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase. <i>Chemistry of Materials</i> , 2021 , 33, 7315-7336	9.6	10
43	Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal-Organic Frameworks in Aqueous Electrolytes. <i>ACS Nano</i> , 2020 , 14, 15919-15925	16.7	16
42	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23180-23187	16.4	12
41	Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces. <i>Angewandte Chemie</i> , 2020 , 132, 23380-23387	3.6	6
40	Understanding the MXene Pseudocapacitance. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1223-1228	6.4	133
39	Robust and conductive two-dimensional metal prganic frameworks with exceptionally high volumetric and areal capacitance. <i>Nature Energy</i> , 2018 , 3, 30-36	62.3	528
38	Concentrated mixed cation acetate Water-in-salt Bolutions as green and low-cost high voltage electrolytes for aqueous batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 2876-2883	35.4	198
37	2D metal carbides and nitrides (MXenes) for energy storage. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	3469
36	In Situ Monitoring of Gravimetric and Viscoelastic Changes in 2D Intercalation Electrodes. <i>ACS Energy Letters</i> , 2017 , 2, 1407-1415	20.1	48
35	Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. <i>Nature Energy</i> , 2017 , 2,	62.3	1071
34	Multidimensional materials and device architectures for future hybrid energy storage. <i>Nature Communications</i> , 2016 , 7, 12647	17.4	992
33	Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600255	6.4	649
32	NMR reveals the surface functionalisation of Ti3C2 MXene. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 5099-102	3.6	491
31	The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). <i>Nanoscale</i> , 2016 , 8, 9128-33	7.7	161

(2014-2016)

30	Synthesis and Characterization of 2D Molybdenum Carbide (MXene). <i>Advanced Functional Materials</i> , 2016 , 26, 3118-3127	15.6	640
29	MXene Materials: Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes (Adv. Electron. Mater. 12/2016). <i>Advanced Electronic Materials</i> , 2016 , 2,	6.4	9
28	Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. <i>Chemistry of Materials</i> , 2016 , 28, 3937-3943	9.6	172
27	Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. <i>ACS Energy Letters</i> , 2016 , 1, 589-594	20.1	75 ²
26	Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from TiBC. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4810-4	16.4	81
25	Amine-Assisted Delamination of Nb2C MXene for Li-Ion Energy Storage Devices. <i>Advanced Materials</i> , 2015 , 27, 3501-6	24	555
24	Synthesis of Carbon/Sulfur Nanolaminates by Electrochemical Extraction of Titanium from Ti2SC. <i>Angewandte Chemie</i> , 2015 , 127, 4892-4896	3.6	19
23	Controlling the actuation properties of MXene paper electrodes upon cation intercalation. <i>Nano Energy</i> , 2015 , 17, 27-35	17.1	135
22	Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. <i>Advanced Materials</i> , 2015 , 27, 339-45	24	860
21	Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon. <i>Journal of Power Sources</i> , 2015 , 274, 121-129	8.9	64
20	Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz-Crystal Admittance and In Situ Electronic Conductance Measurements. <i>Advanced Energy Materials</i> , 2015 , 5, 1400815	21.8	225
19	Innentitelbild: Synthesis of Carbon/Sulfur Nanolaminates by Electrochemical Extraction of Titanium from Ti2SC (Angew. Chem. 16/2015). <i>Angewandte Chemie</i> , 2015 , 127, 4764-4764	3.6	
18	Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ X-Ray Absorption Spectroscopy. <i>Advanced Energy Materials</i> , 2015 , 5, 1500589	21.8	374
17	Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4877-80	16.4	86
16	Stable colloidal solutions of strontium hexaferrite hard magnetic nanoparticles. <i>Chemical Communications</i> , 2014 , 50, 14581-4	5.8	15
15	In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14339	13	211
14	One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. <i>Chemical Communications</i> , 2014 , 50, 7420-3	5.8	427
13	Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. <i>Chemistry of Materials</i> , 2014 , 26, 2374-2381	9.6	778

12	Room-Temperature Carbide-Derived Carbon Synthesis by Electrochemical Etching of MAX Phases. Angewandte Chemie, 2014 , 126, 4977-4980	3.6	23
11	Innentitelbild: Room-Temperature Carbide-Derived Carbon Synthesis by Electrochemical Etching of MAX Phases (Angew. Chem. 19/2014). <i>Angewandte Chemie</i> , 2014 , 126, 4820-4820	3.6	
10	High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. <i>Electrochemistry Communications</i> , 2014 , 48, 118-122	5.1	308
9	Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. <i>Nature</i> , 2014 , 516, 78-81	50.4	2849
8	Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. <i>Science</i> , 2013 , 341, 1502-5	33.3	2510
7	Development of a green supercapacitor composed entirely of environmentally friendly materials. <i>ChemSusChem</i> , 2013 , 6, 2269-80	8.3	113
6	Adsorption of proteins in channels of carbon nanotubes: Effect of surface chemistry. <i>Materials Express</i> , 2013 , 3, 1-10	1.3	15
5	Three-dimensional nanostructures from porous anodic alumina. MRS Communications, 2012, 2, 51-54	2.7	1
4	Separation and liquid chromatography using a single carbon nanotube. <i>Scientific Reports</i> , 2012 , 2, 510	4.9	17
3	Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina. <i>Chemical Communications</i> , 2011 , 47, 2396-8	5.8	22
2	Cobalt-containing nanocomposites based on zeolites of MFI framework type. <i>Journal of Magnetism and Magnetic Materials</i> , 2009 , 321, 3866-3869	2.8	9
1	Water or Anion? Uncovering the Zn2+ Solvation Environment in Mixed Zn(TFSI)2 and LiTFSI Water-in-Salt Electrolytes. <i>ACS Energy Letters</i> ,3458-3463	20.1	5