
Jeffrey B-H Tok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3733385/publications.pdf Version: 2024-02-01

IFFEDEV R-H TOK

#	Article	IF	CITATIONS
1	25th Anniversary Article: The Evolution of Electronic Skin (Eâ€Skin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25, 5997-6038.	11.1	2,001
2	Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555, 83-88.	13.7	1,588
3	Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539, 411-415.	13.7	1,030
4	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	6.0	897
5	Tough and Waterâ€Insensitive Selfâ€Healing Elastomer for Robust Electronic Skin. Advanced Materials, 2018, 30, e1706846.	11.1	798
6	A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications, 2015, 6, 8011.	5.8	749
7	An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology, 2018, 13, 1057-1065.	15.6	736
8	Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nature Biomedical Engineering, 2019, 3, 58-68.	11.6	499
9	Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical Society, 2018, 140, 5280-5289.	6.6	464
10	Self-healing soft electronics. Nature Electronics, 2019, 2, 144-150.	13.1	464
11	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	13.1	421
12	A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature. Advanced Materials, 2014, 26, 796-804.	11.1	375
13	Stretchable organic optoelectronic sensorimotor synapse. Science Advances, 2018, 4, eaat7387.	4.7	359
14	Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5107-5112.	3.3	347
15	Artificial multimodal receptors based on ion relaxation dynamics. Science, 2020, 370, 961-965.	6.0	343
16	An Elastic Autonomous Selfâ€Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical System. Advanced Materials, 2018, 30, e1801435.	11.1	280
17	Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nature Electronics, 2018, 1, 183-190.	13.1	263
18	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science, 2022, 375, 1411-1417.	6.0	230

JEFFREY B-H TOK

#	Article	IF	CITATIONS
19	Ionically Conductive Selfâ€Healing Binder for Low Cost Si Microparticles Anodes in Liâ€ l on Batteries. Advanced Energy Materials, 2018, 8, 1703138.	10.2	224
20	Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science Advances, 2019, 5, eaav3097.	4.7	179
21	Morphing electronics enable neuromodulation in growing tissue. Nature Biotechnology, 2020, 38, 1031-1036.	9.4	174
22	Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics, 2021, 4, 143-150.	13.1	170
23	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	13.7	170
24	Monolithic optical microlithography of high-density elastic circuits. Science, 2021, 373, 88-94.	6.0	168
25	A tissue-like neurotransmitter sensor for the brain and gut. Nature, 2022, 606, 94-101.	13.7	162
26	High-frequency and intrinsically stretchable polymer diodes. Nature, 2021, 600, 246-252.	13.7	138
27	Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors. Advanced Functional Materials, 2018, 28, 1804222.	7.8	134
28	Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science, 2020, 367, 1372-1376.	6.0	132
29	Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. Journal of the American Chemical Society, 2022, 144, 4699-4715.	6.6	125
30	An Intrinsically Stretchable Highâ€Performance Polymer Semiconductor with Low Crystallinity. Advanced Functional Materials, 2019, 29, 1905340.	7.8	120
31	Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nature Communications, 2020, 11, 3362.	5.8	106
32	A Rapid and Facile Soft Contact Lamination Method: Evaluation of Polymer Semiconductors for Stretchable Transistors. Chemistry of Materials, 2014, 26, 4544-4551.	3.2	101
33	Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers. Advanced Materials, 2019, 31, e1903912.	11.1	99
34	An Ultrastretchable and Self-Healable Nanocomposite Conductor Enabled by Autonomously Percolative Electrical Pathways. ACS Nano, 2019, 13, 6531-6539.	7.3	99
35	A design strategy for high mobility stretchable polymer semiconductors. Nature Communications, 2021, 12, 3572.	5.8	94
36	A bioinspired stretchable membrane-based compliance sensor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11314-11320.	3.3	90

JEFFREY B-H TOK

#	Article	IF	CITATIONS
37	Effect of Nonâ€Chlorinated Mixed Solvents on Charge Transport and Morphology of Solutionâ€Processed Polymer Fieldâ€Effect Transistors. Advanced Functional Materials, 2014, 24, 3524-3534.	7.8	89
38	Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoaceneâ€diketopyrrolopyrrole) Polymers. Advanced Electronic Materials, 2017, 3, 1600311.	2.6	89
39	Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions. Chemistry of Materials, 2020, 32, 5700-5714.	3.2	87
40	Light-emitting electronic skin. Nature Photonics, 2013, 7, 769-771.	15.6	82
41	Deformable Organic Nanowire Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, 1704401.	11.1	82
42	Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11718-11723.	3.3	82
43	A molecular design approach towards elastic and multifunctional polymer electronics. Nature Communications, 2021, 12, 5701.	5.8	75
44	A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. Journal of the American Chemical Society, 2021, 143, 11679-11689.	6.6	65
45	Recent advances in flexible and stretchable electronics, sensors and power sources. Science China Chemistry, 2012, 55, 718-725.	4.2	54
46	Characterization of Hydrogen Bonding Formation and Breaking in Semiconducting Polymers under Mechanical Strain. Macromolecules, 2019, 52, 2476-2486.	2.2	54
47	F4â€TCNQ as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability. Advanced Electronic Materials, 2020, 6, 2000251.	2.6	54
48	Tuning Conjugated Polymer Chain Packing for Stretchable Semiconductors. Advanced Materials, 2022, 34, e2104747.	11.1	47
49	Tuning the Self-Healing Response of Poly(dimethylsiloxane)-Based Elastomers. ACS Applied Polymer Materials, 2020, 2, 4127-4139.	2.0	46
50	Reprocessable and Recyclable Polymer Network Electrolytes via Incorporation of Dynamic Covalent Bonds. Chemistry of Materials, 2022, 34, 2393-2399.	3.2	43
51	Modular and Reconfigurable Stretchable Electronic Systems. Advanced Materials Technologies, 2019, 4, 1800417.	3.0	42
52	Enhanced Charge Transport and Stability Conferred by Iron(III) oordination in a Conjugated Polymer Thinâ€Film Transistors. Advanced Electronic Materials, 2018, 4, 1800239.	2.6	13
53	Densely Packed and Highly Ordered Carbon Flower Particles for High Volumetric Performance. Small Science, 2021, 1, 2000067.	5.8	11
54	Densely Packed and Highly Ordered Carbon Flower Particles for High Volumetric Performance. Small Science, 2021, 1, 2170018.	5.8	1