
Francescopaolo Granata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3733307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are Mast Cells MASTers in Cancer?. Frontiers in Immunology, 2017, 8, 424.	4.8	243
2	Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. Journal of Allergy and Clinical Immunology, 2009, 123, 1142-1149.e5.	2.9	186
3	Angiogenesis and lymphangiogenesis in inflammatory skin disorders. Journal of the American Academy of Dermatology, 2015, 73, 144-153.	1.2	141
4	Histamine Induces Exocytosis and IL-6 Production from Human Lung Macrophages Through Interaction with H1 Receptors. Journal of Immunology, 2001, 166, 4083-4091.	0.8	135
5	Activation of Cytokine Production by Secreted Phospholipase A2 in Human Lung Macrophages Expressing the M-Type Receptor. Journal of Immunology, 2005, 174, 464-474.	0.8	130
6	Production of Vascular Endothelial Growth Factors from Human Lung Macrophages Induced by Group IIA and Group X Secreted Phospholipases A2. Journal of Immunology, 2010, 184, 5232-5241.	0.8	111
7	The Intriguing Role of Interleukin 13 in the Pathophysiology of Asthma. Frontiers in Pharmacology, 2019, 10, 1387.	3.5	104
8	Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors. Journal of Leukocyte Biology, 2016, 99, 531-540.	3.3	98
9	Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis. European Journal of Pharmacology, 2016, 778, 146-151.	3.5	95
10	Innate effector cells in angiogenesis and lymphangiogenesis. Current Opinion in Immunology, 2018, 53, 152-160.	5.5	92
11	Secretory Phospholipases A2 Induce β-Glucuronidase Release and IL-6 Production from Human Lung Macrophages. Journal of Immunology, 2000, 164, 4908-4915.	0.8	88
12	Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. International Archives of Allergy and Immunology, 2019, 179, 247-261.	2.1	75
13	Controversial role of mast cells in skin cancers. Experimental Dermatology, 2017, 26, 11-17.	2.9	69
14	Group V Secreted Phospholipase A2 Induces the Release of Proangiogenic and Antiangiogenic Factors by Human Neutrophils. Frontiers in Immunology, 2017, 8, 443.	4.8	65
15	Signaling events involved in cytokine and chemokine production induced by secretory phospholipase A ₂ in human lung macrophages. European Journal of Immunology, 2006, 36, 1938-1950.	2.9	64
16	Lung mast cells are a source of secreted phospholipases A2. Journal of Allergy and Clinical Immunology, 2009, 124, 558-565.e3.	2.9	63
17	Secretory phospholipases A2 induce cytokine release from blood and synovial fluid monocytes. European Journal of Immunology, 2002, 32, 67-76.	2.9	59
18	Secretory Phospholipases A2Activate Selective Functions in Human Eosinophils. Journal of Immunology, 2003, 170, 3279-3288.	0.8	55

#	Article	IF	CITATIONS
19	Secretory Phospholipases A ₂ as Multivalent Mediators of Inflammatory and Allergic Disorders. International Archives of Allergy and Immunology, 2003, 131, 153-163.	2.1	45
20	GM-CSF and IL-3 Modulate Human Monocyte TNF-α Production and Renewal in In Vitro Models of Trained Immunity. Frontiers in Immunology, 2017, 7, 680.	4.8	38
21	Secreted phospholipases A2: A proinflammatory connection between macrophages and mast cells in the human lung. Immunobiology, 2009, 214, 811-821.	1.9	37
22	ILâ€3 synergises with basophilâ€derived ILâ€4 and ILâ€13 to promote the alternative activation of human monocytes. European Journal of Immunology, 2015, 45, 2042-2051.	2.9	37
23	Basophils and Skin Disorders. Journal of Investigative Dermatology, 2014, 134, 1202-1210.	0.7	33
24	Immunopharmacological modulation of mast cells. Current Opinion in Pharmacology, 2014, 17, 45-57.	3.5	32
25	Human heart as a shock organ in anaphylaxis. Allergo Journal International, 2014, 23, 60-66.	2.0	28
26	Common Variable Immunodeficiency and Autoimmune Diseases: A Retrospective Study of 95 Adult Patients in a Single Tertiary Care Center. Frontiers in Immunology, 2021, 12, 652487.	4.8	27
27	Lipopolysaccharide-Elicited TSLPR Expression Enriches a Functionally Discrete Subset of Human CD14+ CD1c+ Monocytes. Journal of Immunology, 2017, 198, 3426-3435.	0.8	26
28	Immunoglobulin replacement therapy in primary and secondary antibody deficiency: The correct clinical approach. International Immunopharmacology, 2017, 52, 136-142.	3.8	23
29	Real-life evidence of low-dose mepolizumab efficacy in EGPA: a case series. Respiratory Research, 2021, 22, 185.	3.6	22
30	The role of mast cell-derived secreted phospholipases A2 in respiratory allergy. Biochimie, 2010, 92, 588-593.	2.6	21
31	Preliminaries. Chemical Immunology and Allergy, 2013, 99, I-XII.	1.7	20
32	Secreted Phospholipases A2 in Hereditary Angioedema With C1-Inhibitor Deficiency. Frontiers in Immunology, 2018, 9, 1721.	4.8	19
33	Phenotypic and Functional Heterogeneity of Low-Density and High-Density Human Lung Macrophages. Biomedicines, 2021, 9, 505.	3.2	16
34	HIV-1 Nef promotes migration and chemokine synthesis of human basophils and mast cells through the interaction with CXCR4. Clinical and Molecular Allergy, 2016, 14, 15.	1.8	14
35	Macrophage-polarizing stimuli differentially modulate the inflammatory profile induced by the secreted phospholipase A2 group IA in human lung macrophages. Cytokine, 2021, 138, 155378.	3.2	13
36	Immunosuppressive Treatment in Antiphospholipid Syndrome: Is It Worth It?. Biomedicines, 2021, 9, 132.	3.2	11

#	Article	IF	CITATIONS
37	The N-Formyl Peptide Receptors and Rheumatoid Arthritis: A Dangerous Liaison or Confusing Relationship?. Frontiers in Immunology, 2021, 12, 685214.	4.8	9
38	Simplexide Induces CD1d-Dependent Cytokine and Chemokine Production from Human Monocytes. PLoS ONE, 2014, 9, e111326.	2.5	8
39	Novel Biological Therapies in Severe Asthma: Targeting the Right Trait. Current Medicinal Chemistry, 2019, 26, 2801-2822.	2.4	6
40	Predictive Response to Immunotherapy Score: A Useful Tool for Identifying Eligible Patients for Allergen Immunotherapy. Biomedicines, 2022, 10, 971.	3.2	4
41	Clinical features and burden of genital attacks in hereditary angioedema. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 643-644.e2.	3.8	3