Bruce A Watkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3733091/publications.pdf Version: 2024-02-01

		61984	56724
111	7,188	43	83
papers	citations	h-index	g-index
117	117	117	8431
all docs	docs citations	times ranked	citing authors

RDUCE A WATKING

#	Article	IF	CITATIONS
1	Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Advances in Nutrition, 2022, 13, 1989-2001.	6.4	8
2	Dietary Annatto-Extracted Tocotrienol Reduces Inflammation and Oxidative Stress, and Improves Macronutrient Metabolism in Obese Mice: A Metabolic Profiling Study. Nutrients, 2021, 13, 1267.	4.1	9
3	Endocannabinoids and aging—Inflammation, neuroplasticity, mood and pain. Vitamins and Hormones, 2021, 115, 129-172.	1.7	7
4	Tai Chi Improves Brain Functional Connectivity and Plasma Lysophosphatidylcholines in Postmenopausal Women With Knee Osteoarthritis: An Exploratory Pilot Study. Frontiers in Medicine, 2021, 8, 775344.	2.6	20
5	Tocotrienol Supplementation Led to Higher Serum Levels of Lysophospholipids but Lower Acylcarnitines in Postmenopausal Women: A Randomized Double-Blinded Placebo-Controlled Clinical Trial. Frontiers in Nutrition, 2021, 8, 766711.	3.7	3
6	COVID-19: repositioning nutrition research for the next pandemic. Nutrition Research, 2020, 81, 1-6.	2.9	23
7	Actions of annatto-extracted tocotrienol supplementation on obese postmenopausal women: study protocol for a double-blinded, placebo-controlled, randomised trial. BMJ Open, 2020, 10, e034338.	1.9	1
8	Diet, endocannabinoids, and health. Nutrition Research, 2019, 70, 32-39.	2.9	21
9	Inadequate diet descriptions: a conundrum for animal model research. Nutrition Research, 2019, 65, 1-3.	2.9	9
10	Nutrition Research: new direction and scope are refining the Journal. Nutrition Research, 2019, 71, 1-7.	2.9	0
11	Endocannabinoids, exercise, pain, and a path to health with aging. Molecular Aspects of Medicine, 2018, 64, 68-78.	6.4	37
12	Serum phospholipid fraction of polyunsaturated fatty acids is the preferred indicator for nutrition and health status in hemodialysis patients. Journal of Nutritional Biochemistry, 2016, 38, 18-24.	4.2	2
13	Circulating levels of endocannabinoids and oxylipins altered by dietary lipids in older women are likely associated with previously identified gene targets. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1693-1704.	2.4	31
14	Association between plasma endocannabinoids and appetite in hemodialysis patients: A pilot study. Nutrition Research, 2016, 36, 658-662.	2.9	11
15	Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice. International Journal of Obesity, 2016, 40, 129-137.	3.4	58
16	Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts. Frontiers in Physiology, 2014, 5, 100.	2.8	36
17	High-Dose Eicosapentaenoic Acid and Docosahexaenoic Acid Supplementation Reduces Bone Resorption in Postmenopausal Breast Cancer Survivors on Aromatase Inhibitors: A Pilot Study. Nutrition and Cancer, 2014, 66, 68-76.	2.0	46
18	Cannabinoid receptor antagonists and fatty acids alter endocannabinoid system gene expression and COX activity. Journal of Nutritional Biochemistry, 2014, 25, 815-823.	4.2	20

#	Article	IF	CITATIONS
19	The endocannabinoid system: directing eating behavior and macronutrient metabolism. Frontiers in Psychology, 2014, 5, 1506.	2.1	52
20	Fat to treat fat: Emerging relationship between dietary PUFA, endocannabinoids, and obesity. Prostaglandins and Other Lipid Mediators, 2013, 104-105, 32-41.	1.9	60
21	Inverse relationship between long-chain n-3 fatty acids and risk of sudden cardiac death in patients starting hemodialysis. Kidney International, 2013, 83, 1130-1135.	5.2	45
22	Fatty Acids and Other Risk Factors for Sudden Cardiac Death in Patients Starting Hemodialysis. American Journal of Nephrology, 2013, 38, 12-18.	3.1	24
23	Nutrition Can Modulate the Toxicity of Environmental Pollutants: Implications in Risk Assessment and Human Health. Environmental Health Perspectives, 2012, 120, 771-774.	6.0	83
24	Low Blood Levels of Long-Chain n–3 Polyunsaturated Fatty Acids in US Hemodialysis Patients: Clinical Implications. American Journal of Nephrology, 2012, 36, 451-458.	3.1	34
25	Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle. Journal of Nutritional Biochemistry, 2012, 23, 986-993.	4.2	32
26	Endocannabinoid signaling and energy metabolism: A target for dietary intervention. Nutrition, 2011, 27, 624-632.	2.4	38
27	Eicosapentaenoic acid decreases expression of anandamide synthesis enzyme and cannabinoid receptor 2 in osteoblast-like cells. Journal of Nutritional Biochemistry, 2011, 22, 195-200.	4.2	29
28	Omega-3 Fatty Acids and Bone Metabolism. , 2011, , .		0
29	Bone mineral content is positively correlated to <i>n</i> -3 fatty acids in the femur of growing rats. British Journal of Nutrition, 2010, 104, 674-685.	2.3	50
30	Dietary Source of Stearidonic Acid Promotes Higher Muscle DHA Concentrations than Linolenic Acid in Hybrid Striped Bass. Lipids, 2010, 45, 21-27.	17	17
		1.7	
31	The endocannabinoid signaling system: a marriage of PUFA and musculoskeletal health. Journal of Nutritional Biochemistry, 2010, 21, 1141-1152.	4.2	27
31 32	The endocannabinoid signaling system: a marriage of PUFA and musculoskeletal health. Journal of Nutritional Biochemistry, 2010, 21, 1141-1152. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology, 2009, 50, 56-67.	4.2 7.3	27 176
31 32 33	The endocannabinoid signaling system: a marriage of PUFA and musculoskeletal health. Journal of Nutritional Biochemistry, 2010, 21, 1141-1152. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology, 2009, 50, 56-67. Enhanced lumbar spine bone mineral content in piglets fed arachidonic acid and docosahexaenoic acid is modulated by severity of growth restriction. British Journal of Nutrition, 2009, 102, 1117-1120.	1.7 4.2 7.3 2.3	27 176 3
31 32 33 34	 The endocannabinoid signaling system: a marriage of PUFA and musculoskeletal health. Journal of Nutritional Biochemistry, 2010, 21, 1141-1152. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology, 2009, 50, 56-67. Enhanced lumbar spine bone mineral content in piglets fed arachidonic acid and docosahexaenoic acid is modulated by severity of growth restriction. British Journal of Nutrition, 2009, 102, 1117-1120. Muscle atrophy and long bone osteopenia are attenuated with nâ€3 PUFA in a mouse model of hindlimb suspension. FASEB Journal, 2009, 23, 553.6. 	1.7 4.2 7.3 2.3 0.5	27 176 3 0
 31 32 33 34 35 	The endocannabinoid signaling system: a marriage of PUFA and musculoskeletal health. Journal of Nutritional Biochemistry, 2010, 21, 1141-1152. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology, 2009, 50, 56-67. Enhanced lumbar spine bone mineral content in piglets fed arachidonic acid and docosahexaenoic acid is modulated by severity of growth restriction. British Journal of Nutrition, 2009, 102, 1117-1120. Muscle atrophy and long bone osteopenia are attenuated with nâ€3 PUFA in a mouse model of hindlimb suspension. FASEB Journal, 2009, 23, 553.6. Culture duration and PUFA treatment influence expression of endocannabinoid proteins in MC3T3â€E1 osteoblastâ€ike cells. FASEB Journal, 2009, 23, 543.15.	1.7 4.2 7.3 2.3 0.5 0.5	27 176 3 0

#	Article	IF	CITATIONS
37	Feasibility Study of Erythrocyte Long-Chain Omega-3 Polyunsaturated Fatty Acid Content and Mortality Risk in Hemodialysis Patients. , 2008, 18, 509-512.		27
38	Acute Rise of Omega-3 Polyunsaturated Fatty Acids During Hemodialysis Treatment. , 2008, 18, 301-303.		9
39	Conjugated Linoleic Acids. Food Additives, 2008, , .	0.1	0
40	Oral fish oil supplementation raises blood omega-3 levels and lowers C-reactive protein in haemodialysis patients a pilot study. Nephrology Dialysis Transplantation, 2007, 22, 3561-3567.	0.7	110
41	Using Nutrition for Intervention and Prevention against Environmental Chemical Toxicity and Associated Diseases. Environmental Health Perspectives, 2007, 115, 493-495.	6.0	84
42	Common tea formulations modulate <i>in vitro</i> digestive recovery of green tea catechins. Molecular Nutrition and Food Research, 2007, 51, 1152-1162.	3.3	219
43	Dietary PUFA and flavonoids as deterrents for environmental pollutants. Journal of Nutritional Biochemistry, 2007, 18, 196-205.	4.2	30
44	Evaluation of two soybean meals fed to yellow perch (Perca flavescens). Aquaculture Nutrition, 2007, 13, 431-438.	2.7	44
45	Improvement of Bone Quality in Gonad-Intact Middle-Aged Male Rats by Long-Chain n-3 Polyunsaturated Fatty Acid. Calcified Tissue International, 2007, 80, 286-293.	3.1	30
46	Dietary long chain nâ€3 PUFA attenuates musculoskeletal atrophy associated with disuse in mice. FASEB Journal, 2007, 21, A728.	0.5	1
47	Oral fish oil supplementation is efficacious and well tolerated in chronic hemodialysis patients: a pilot study. FASEB Journal, 2007, 21, A696.	0.5	0
48	Protective effect of combinations of arachidonic and docosahexaenoic acids on hindlimb suspension induced bone loss in mice. FASEB Journal, 2007, 21, A729.	0.5	0
49	Protective effect of dietary long-chainn-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats. British Journal of Nutrition, 2006, 95, 462-468.	2.3	67
50	Dietary ratio of n-6/n-3 PUFAs and docosahexaenoic acid: actions on bone mineral and serum biomarkers in ovariectomized rats. Journal of Nutritional Biochemistry, 2006, 17, 282-289.	4.2	111
51	Cyanidin attenuates PGE2 production and cyclooxygenase-2 expression in LNCaP human prostate cancer cells. Journal of Nutritional Biochemistry, 2006, 17, 589-596.	4.2	59
52	Fish Consumption and Omega-3 Fatty Acid Status and Determinants in Long-Term Hemodialysis. American Journal of Kidney Diseases, 2006, 47, 1064-1071.	1.9	71
53	Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells. Carcinogenesis, 2006, 28, 809-815.	2.8	81
54	Omegaâ€3 PUFA plasma and red blood cell status in chronic hemodialysis patients. FASEB Journal, 2006, 20, A183.	0.5	0

#	Article	IF	CITATIONS
55	Phytochemical Learning Resource (PLR). FASEB Journal, 2006, 20, A1010.	0.5	0
56	Chromium picolinate and conjugated linoleic acid: effects on diet and exerciseâ€induced changes in metabolic and cardiovascular health indexes in overweight women. FASEB Journal, 2006, 20, A592.	0.5	0
57	Dietary nâ€3 PUFA promote endurance training and fat loss in male mice. FASEB Journal, 2006, 20, A590.	0.5	1
58	Accumulation of catechins in bone and liver of mice fed green tea while under physical stress. FASEB Journal, 2006, 20, A570.	0.5	5
59	Conjugated Linoleic Acids. Modern Nutrition, 2006, , 285-295.	0.1	1
60	Origins and evolution of the Western diet: health implications for the 21st century1,2. American Journal of Clinical Nutrition, 2005, 81, 341-354.	4.7	1,910
61	Comparison of stearidonic acid and ?-linolenic acid on PGE production and COX-2 protein levels in MDA-MB-231 breast cancer cell cultures. Journal of Nutritional Biochemistry, 2005, 16, 184-192.	4.2	57
62	Protective actions of soy isoflavones and n-3 PUFAs on bone mass in ovariectomized rats. Journal of Nutritional Biochemistry, 2005, 16, 479-488.	4.2	49
63	Repletion with (n-3) Fatty Acids Reverses Bone Structural Deficits in (n-3)–Deficient Rats. Journal of Nutrition, 2004, 134, 388-394.	2.9	61
64	Anthocyanin Quantification and Radical Scavenging Capacity of Concord, Norton, and Marechal Foch Grapes and Wines. Journal of Agricultural and Food Chemistry, 2004, 52, 6779-6786.	5.2	78
65	Decreased production of inflammatory mediators in human osteoarthritic chondrocytes by conjugated linoleic acids. Lipids, 2004, 39, 161-166.	1.7	33
66	A test of Ockham's razor: implications of conjugated linoleic acid in bone biology. American Journal of Clinical Nutrition, 2004, 79, 1175S-1185S.	4.7	25
67	Impact of dietary nâ^'3 FA deficiency on rat bone tissue FA composition. Lipids, 2003, 38, 683-686.	1.7	25
68	Comparison of commercial supplements containing conjugated linoleic acids. Journal of Food Composition and Analysis, 2003, 16, 419-428.	3.9	30
69	Oxidized lipid depresses canine growth, immune function, and bone formation. Journal of Nutritional Biochemistry, 2003, 14, 24-31.	4.2	36
70	Conjugated Linoleic Acids Alter the Fatty Acid Composition and Physical Properties of Egg Yolk and Albumen. Journal of Agricultural and Food Chemistry, 2003, 51, 6870-6876.	5.2	42
71	Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, 68, 387-398.	2.2	206
72	Supercritical Fluid Extraction of Lycopene from Tomato Processing Byproducts. Journal of Agricultural and Food Chemistry, 2002, 50, 2638-2643.	5.2	194

#	Article	IF	CITATIONS
73	Analysis of Fatty Acids in Food Lipids. Current Protocols in Food Analytical Chemistry, 2001, 00, D1.2.1.	0.0	17
74	Effect of red palm olein on bone tissue fatty acid composition and histomorphometric parametersâ~†. Nutrition Research, 2001, 21, 199-213.	2.9	6
75	Metabolic and behavioral responses in pre-weanling rats following alteration of maternal diet. Physiology and Behavior, 2001, 72, 147-157.	2.1	10
76	Dietary Conjugated Linoleic Acids and Lipid Source Alter Fatty Acid Composition of Juvenile Yellow Perch, Perca flavescens. Journal of Nutrition, 2001, 131, 2322-2328.	2.9	57
77	Lipids as modulators of bone remodelling. Current Opinion in Clinical Nutrition and Metabolic Care, 2001, 4, 105-110.	2.5	23
78	Omega-3 Polyunsaturated Fatty Acids and Skeletal Health ¹ . Experimental Biology and Medicine, 2001, 226, 485-497.	2.4	110
79	Calcium Analysis of Selected Western African Foods. Journal of Food Composition and Analysis, 2001, 14, 37-42.	3.9	21
80	The Role of Methyl-Linoleic Acid Epoxide and Diol Metabolites in the Amplified Toxicity of Linoleic Acid and Polychlorinated Biphenyls to Vascular Endothelial Cells. Toxicology and Applied Pharmacology, 2001, 171, 184-193.	2.8	56
81	Nutraceutical Fatty Acids as Biochemical and Molecular Modulators of Skeletal Biology. Journal of the American College of Nutrition, 2001, 20, 410S-416S.	1.8	45
82	Dietary Ratio of (n-6)/(n-3) Polyunsaturated Fatty Acids Alters the Fatty Acid Composition of Bone Compartments and Biomarkers of Bone Formation in Rats. Journal of Nutrition, 2000, 130, 2274-2284.	2.9	226
83	Effect of Alkali Saponification, Enzymatic Hydrolysis and Storage Time on the Total Carotenoid Concentration of Costa Rican Crude Palm Oil. Journal of Food Composition and Analysis, 2000, 13, 179-187.	3.9	17
84	Effects of dietary conjugated linoleic acids on hepatic and muscle lipids in hybrid striped bass. Lipids, 2000, 35, 155-161.	1.7	79
85	Fatty acid—Mediated activation of vascular endothelial cells. Metabolism: Clinical and Experimental, 2000, 49, 1006-1013.	3.4	105
86	Conjugated Linoleic Acid and Bone Biology. Journal of the American College of Nutrition, 2000, 19, 478S-486S.	1.8	71
87	Omega-3 Fatty Acids Enhance Ligament Fibroblast Collagen Formation in Association with Changes in Interleukin-6 Production. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 88-95.	1.8	64
88	Omegaâ€3 Fatty Acids Enhance Ligament Fibroblast Collagen Formation in Association with Changes in Interleukinâ€6 Production. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 88-95.	1.8	9
89	Conjugated Linoleic Acid. Modern Nutrition, 2000, , .	0.1	2
90	Dietary Conjugated Linoleic Acids Alter Serum IGF-I and IGF Binding Protein Concentrations and Reduce Bone Formation in Rats Fed (n-6) or (n-3) Fatty Acids. Journal of Bone and Mineral Research, 1999, 14, 1153-1162.	2.8	148

#	Article	IF	CITATIONS
91	Conjugated linoleic acids alter bone fatty acid composition and reduce ex vivo prostaglandin E2 biosynthesis in rats fed n-6 or n-3 fatty acids. Lipids, 1998, 33, 417-425.	1.7	249
92	Effects of High-Fat Diet on Mature Bone Mineral Content, Structure, and Mechanical Properties. Calcified Tissue International, 1998, 63, 74-79.	3.1	85
93	Modulation of macrophage cytokine production by conjugated linoleic acids is influenced by the dietary n-6:n-3 fatty acid ratio. Journal of Nutritional Biochemistry, 1998, 9, 258-266.	4.2	116
94	ROLE OF DIETARY LIPID AND ANTIOXIDANTS IN BONE METABOLISM. Nutrition Research, 1997, 17, 1209-1228.	2.9	28
95	Dietary Lipids Modulate Bone Prostaglandin E2 Production, Insulin-Like Growth Factor-I Concentration and Formation Rate in Chicks ,. Journal of Nutrition, 1997, 127, 1084-1091.	2.9	156
96	Dietary cholesterol supplementation protects against endothelial cell dysfunction mediated by native and lipolyzed lipoproteins derived from rabbits fed high-corn oil diets. Journal of Nutritional Biochemistry, 1997, 8, 566-572.	4.2	4
97	Dietary Polyunsaturated Fatty Acids Modulate Responses of Pigs to Mycoplasma hyopneumoniae Infection. Journal of Nutrition, 1996, 126, 1541-1548.	2.9	18
98	Susceptibility to hepatic oxidative stress in rabbits fed different animal and plant fats Journal of the American College of Nutrition, 1996, 15, 289-294.	1.8	70
99	Linoleate Impairs Collagen Synthesis in Primary Cultures of Avian Chondrocytes. Experimental Biology and Medicine, 1996, 212, 153-159.	2.4	36
100	Dietary (n-3) and (n-6) polyunsaturates and acetylsalicylic acid alter ex vivo PGE2 biosynthesis, tissue IGF-I levels, and bone morphometry in chicks. Journal of Bone and Mineral Research, 1996, 11, 1321-1332.	2.8	102
101	Vitamin E stimulates trabecular bone formation and alters epiphyseal cartilage morphometry. Calcified Tissue International, 1995, 57, 293-300.	3.1	96
102	Electron spin resonance studies of fatty acid-induced alterations in membrane fluidity in cultured endothelial cells. International Journal of Biochemistry and Cell Biology, 1995, 27, 665-673.	2.8	25
103	Selective Disruption of Endothelial Barrier Function in Culture by Pure Fatty Acids and Fatty Acids Derived from Animal and Plant Fats. Journal of Nutrition, 1993, 123, 1208-1216.	2.9	43
104	Local Modulation of Skeletal Growth and Bone Modeling in Poultry. Journal of Nutrition, 1993, 123, 317-322.	2.9	19
105	Avian Bone Metabolism: Cell-Mediated Mineralization and Localized Regulatory Factors. Journal of Nutrition, 1993, 123, 299-300.	2.9	0
106	Disruption of endothelial barrier function by lipolytic remnants of triglyceride-rich lipoproteins. Atherosclerosis, 1992, 95, 235-247.	0.8	62
107	Importance of Essential Fatty Acids and Their Derivatives in Poultry. Journal of Nutrition, 1991, 121, 1475-1485.	2.9	65
108	Growth of epithelium from a preneoplastic mammary outgrowth in response to mammary adipose tissue. In Vitro Cellular & Developmental Biology, 1989, 25, 409-418.	1.0	17

#	Article	IF	CITATIONS
109	Effects of various n-3 lipid sources on fatty acid compositions in chicken tissues. Journal of Food Composition and Analysis, 1989, 2, 104-117.	3.9	63
110	Alterations in chick bone growth and bone tissue eicosanoic fatty acids: Relationship to biotin status, pair-feeding, and treadmill exercise. Nutrition Research, 1989, 9, 1229-1236.	2.9	1
111	Influences of biotin deficiency and dietary trans-fatty acids on tissue lipids in chickens. British Journal of Nutrition, 1989, 61, 99-111.	2.3	22