
Akatsuki Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3732624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature, 2022, 602, 300-306.	13.7	428
2	The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and immune resistance. Cell Reports, 2022, 38, 110218.	2.9	148
3	Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature, 2022, 603, 700-705.	13.7	447
4	Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 2022, 603, 706-714.	13.7	756
5	Identification of domestic cat hepadnavirus from a cat blood sample in Japan. Journal of Veterinary Medical Science, 2022, 84, 648-652.	0.3	16
6	Characterization of the Immune Resistance of Severe Acute Respiratory Syndrome Coronavirus 2 Mu Variant and the Robust Immunity Induced by Mu Infection. Journal of Infectious Diseases, 2022, 226, 1200-1203.	1.9	22
7	Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening. Antiviral Research, 2022, 199, 105268.	1.9	15
8	Rapid inactivation of <i>Dabie bandavirus</i> (SFTSV) by irradiation with deepâ€ultraviolet lightâ€emitting diode. Journal of Medical Virology, 2022, , .	2.5	3
9	Virucidal activity and mechanism of action of cetylpyridinium chloride against SARS-CoV-2. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2022, 34, 800-804.	0.2	12
10	Highly polymerized proanthocyanidins (PAC) components from blueberry leaf and stem significantly inhibit SARS-CoV-2 infection via inhibition of ACE2 and viral 3CLpro enzymes. Biochemical and Biophysical Research Communications, 2022, 615, 56-62.	1.0	9
11	Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell, 2022, 185, 2103-2115.e19.	13.5	273
12	Cell response analysis in SARS-CoV-2 infected bronchial organoids. Communications Biology, 2022, 5, .	2.0	39
13	Seroprevalence of Severe Fever with Thrombocytopenia Syndrome Virus in Small-Animal Veterinarians and Nurses in the Japanese Prefecture with the Highest Case Load. Viruses, 2021, 13, 229.	1.5	14
14	A Potent Anti-Simian Immunodeficiency Virus Neutralizing Antibody Induction Associated with a Germ Line Immunoglobulin Gene Polymorphism in Rhesus Macaques. Journal of Virology, 2021, 95, .	1.5	2
15	Bovine respiratory coronavirus enhances bacterial adherence by upregulating expression of cellular receptors on bovine respiratory epithelial cells. Veterinary Microbiology, 2021, 255, 109017.	0.8	11
16	Rapid Inactivation of SARS-CoV-2 with Ozonated Water. Ozone: Science and Engineering, 2021, 43, 208-212.	1.4	9
17	Rapid Inactivation of SARS-CoV-2 Variants by Continuous and Intermittent Irradiation with a Deep-Ultraviolet Light-Emitting Diode (DUV-LED) Device. Pathogens, 2021, 10, 754.	1.2	17
18	How Do Flaviviruses Hijack Host Cell Functions by Phase Separation?. Viruses, 2021, 13, 1479.	1.5	11

Ακατςυκί δαιτο

#	Article	IF	CITATIONS
19	SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host and Microbe, 2021, 29, 1124-1136.e11.	5.1	421
20	Prevalence of antibodies against human respiratory viruses potentially involving anthropozoonoses in wild bonobos. Primates, 2021, 62, 897-903.	0.7	4
21	SARS-CoV-2 B.1.617 Mutations L452R and E484Q Are Not Synergistic for Antibody Evasion. Journal of Infectious Diseases, 2021, 224, 989-994.	1.9	136
22	Natto extract, a Japanese fermented soybean food, directly inhibits viral infections including SARS-CoV-2 inÂvitro. Biochemical and Biophysical Research Communications, 2021, 570, 21-25.	1.0	19
23	SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599, 114-119.	13.7	1,041
24	HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology, 2021, 18, 32.	0.9	17
25	Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. Emerging Microbes and Infections, 2020, 9, 1744-1747.	3.0	227
26	Bovine Respiratory Syncytial Virus Enhances the Adherence of Pasteurella multocida to Bovine Lower Respiratory Tract Epithelial Cells by Upregulating the Platelet-Activating Factor Receptor. Frontiers in Microbiology, 2020, 11, 1676.	1.5	5
27	Bovine Respiratory Syncytial Virus Decreased Pasteurella multocida Adherence by Downregulating the Expression of Intercellular Adhesion Molecule-1 on the Surface of Upper Respiratory Epithelial Cells. Veterinary Microbiology, 2020, 246, 108748.	0.8	3
28	The 4th and 112th Residues of Viral Capsid Cooperatively Modulate Capsid-CPSF6 Interactions of HIV-1. AIDS Research and Human Retroviruses, 2020, 36, 513-521.	0.5	2
29	Evaluation of novel rapid detection kits for dengue virus NS1 antigen in Dhaka, Bangladesh, in 2017. Virology Journal, 2019, 16, 102.	1.4	15
30	Genotype replacement of dengue virus type 3 and clade replacement of dengue virus type 2 genotype Cosmopolitan in Dhaka, Bangladesh in 2017. Infection, Genetics and Evolution, 2019, 75, 103977.	1.0	27
31	Multiple Pathways To Avoid Beta Interferon Sensitivity of HIV-1 by Mutations in Capsid. Journal of Virology, 2019, 93, .	1.5	17
32	A Novel Phenotype Links HIV-1 Capsid Stability to cGAS-Mediated DNA Sensing. Journal of Virology, 2019, 93, .	1.5	30
33	HIV-1 is more dependent on the K182 capsid residue than HIV-2 for interactions with CPSF6. Virology, 2019, 532, 118-126.	1.1	4
34	CA Mutation N57A Has Distinct Strain-Specific HIV-1 Capsid Uncoating and Infectivity Phenotypes. Journal of Virology, 2019, 93, .	1.5	7
35	Discovery of a small molecule inhibitor targeting dengue virus NS5 RNA-dependent RNA polymerase. PLoS Neglected Tropical Diseases, 2019, 13, e0007894.	1.3	49
36	Naturally Occurring Mutations in HIV-1 CRF01_AE Capsid Affect Viral Sensitivity to Restriction Factors. AIDS Research and Human Retroviruses, 2018, 34, 382-392.	0.5	9

Ακατςυκί δαιτο

#	Article	IF	CITATIONS
37	Human T-cell leukemia virus type 1 infects multiple lineage hematopoietic cells in vivo. PLoS Pathogens, 2017, 13, e1006722.	2.1	56
38	Epidemiological Surveillance of Lymphocryptovirus Infection in Wild Bonobos. Frontiers in Microbiology, 2016, 7, 1262.	1.5	4
39	Roles of Capsid-Interacting Host Factors in Multimodal Inhibition of HIV-1 by PF74. Journal of Virology, 2016, 90, 5808-5823.	1.5	72
40	Sequence diversity of dengue virus type 2 in brain and thymus of infected interferon receptor ko mice: implications for dengue virulence. Virology Journal, 2016, 13, 199.	1.4	11
41	Capsid-CPSF6 Interaction Is Dispensable for HIV-1 Replication in Primary Cells but Is Selected during Virus Passage <i>In Vivo</i> . Journal of Virology, 2016, 90, 6918-6935.	1.5	50
42	Novel mutant human immunodeficiency virus type 1 strains with high degree of resistance to cynomolgus macaque TRIMCyp generated by random mutagenesis. Journal of General Virology, 2016, 97, 963-976.	1.3	9
43	Hematopoietic Stem Cell Infected with HTLV-1 Functions As a Viral Reservoir In Vivo. Blood, 2016, 128, 1343-1343.	0.6	4
44	Emergence of infectious malignant thrombocytopenia in Japanese macaques (Macaca fuscata) by SRV-4 after transmission to a novel host. Scientific Reports, 2015, 5, 8850.	1.6	14
45	Seroprevalence of Japanese encephalitis virus infection in captive Japanese macaques (Macaca fuscata). Primates, 2014, 55, 441-445.	0.7	7
46	Dynamics of cellular immune responses in the acute phase of dengue virus infection. Archives of Virology, 2013, 158, 1209-1220.	0.9	16
47	Systemic biological analysis of the mutations in two distinct HIV-1mt genomes occurred during replication in macaque cells. Microbes and Infection, 2013, 15, 319-328.	1.0	24
48	Efficient in vivo depletion of CD8+ T lymphocytes in common marmosets by novel CD8 monoclonal antibody administration. Immunology Letters, 2013, 154, 12-17.	1.1	2
49	Gag-CA Q110D mutation elicits TRIM5-independent enhancement ofÂHIV-1mt replication in macaque cells. Microbes and Infection, 2013, 15, 56-65.	1.0	27
50	TRIM5 genotypes in cynomolgus monkeys primarily influence inter-individual diversity in susceptibility to monkey-tropic human immunodeficiency virus type 1. Journal of General Virology, 2013, 94, 1318-1324.	1.3	15
51	Characterization of simian T-cell leukemia virus type 1 in naturally infected Japanese macaques as a model of HTLV-1 infection. Retrovirology, 2013, 10, 118.	0.9	36
52	Epidemiological study of zoonoses derived from humans in captive chimpanzees. Primates, 2013, 54, 89-98.	0.7	23
53	Generation of Rhesus Macaque-Tropic HIV-1 Clones That Are Resistant to Major Anti-HIV-1 Restriction Factors. Journal of Virology, 2013, 87, 11447-11461.	1.5	40
54	Macaque-tropic human immunodeficiency virus type 1: breaking out of the host restriction factors. Frontiers in Microbiology, 2013, 4, 187.	1.5	12

#	Article	IF	CITATIONS
55	Presence of Viral Genome in Urine and Development of Hematuria and Pathological Changes in Kidneys in Common Marmoset (Callithrix jacchus) after Inoculation with Dengue Virus. Pathogens, 2013, 2, 357-363.	1.2	7
56	Changes in hematological and serum biochemical parameters in common marmosets (<i>Callithrix) Tj ETQq0 (</i>	0 0 rgBT /0\	verlogk 10 Tf 5

57	Allele frequency of antiretroviral host factor TRIMCyp in wild-caught cynomolgus macaques (Macaca) Tj ETQq1 1	0.784314 1.5	rgBT /Ove
58	CD16+ natural killer cells play a limited role against primary dengue virus infection in tamarins. Archives of Virology, 2012, 157, 363-368.	0.9	9
59	Geographical, genetic and functional diversity of antiretroviral host factor TRIMCyp in cynomolgus macaque (Macaca fascicularis). Journal of General Virology, 2012, 93, 594-602.	1.3	21
60	The E89K Mutation in the Matrix Protein of the Measles Virus Affects In Vitro Cell Death and Virus Replication Efficiency in Human PBMC. The Open Virology Journal, 2012, 6, 68-72.	1.8	2
61	Long-Term Persistent GBV-B Infection and Development of a Chronic and Progressive Hepatitis C-Like Disease in Marmosets. Frontiers in Microbiology, 2011, 2, 240.	1.5	20
62	Improved capacity of a monkey-tropic HIV-1 derivative to replicate in cynomolgus monkeys with minimal modifications. Microbes and Infection, 2011, 13, 58-64.	1.0	40
63	Common marmoset (Callithrix jacchus) as a primate model of dengue virus infection: development of high levels of viraemia and demonstration of protective immunity. Journal of General Virology, 2011, 92, 2272-2280.	1.3	67
64	Characterization of Natural Killer Cells in Tamarins: A Technical Basis for Studies of Innate Immunity. Frontiers in Microbiology, 2010, 1, 128.	1.5	9
65	Analysis of antibody response by temperature-sensitive measles vaccine strain in the cotton rat model. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32, 395-406.	0.7	12
66	Adaptation of wild-type measles virus to cotton rat lung cells: E89K mutation in matrix protein contributes to its fitness. Virus Genes, 2009, 39, 330-334.	0.7	9
67	Modification of a loop sequence between α-helices 6 and 7 of virus capsid (CA) protein in a human immunodeficiency virus type 1 (HIV-1) derivative that has simian immunodeficiency virus (SIVmac239) vifand CA α-helices 4 and 5 loop improves replication in cynomolgus monkey cells. Retrovirology, 2009, 6, 70.	0.9	36