
Melenda Jeter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3732456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Flow Nasal Cannula Therapy for Exertional Dyspnea in Patients with Cancer: A Pilot Randomized Clinical Trial. Oncologist, 2021, 26, e1470-e1479.	3.7	15
2	Prognosis of severe lymphopenia after postoperative radiotherapy in non-small cell lung cancer: Results of a long-term follow up study. Clinical and Translational Radiation Oncology, 2021, 28, 54-61.	1.7	5
3	Phase I Trial of Pembrolizumab and Radiation Therapy after Induction Chemotherapy for Extensive-Stage Small Cell Lung Cancer. Journal of Thoracic Oncology, 2020, 15, 266-273.	1.1	58
4	Phase 1/2 Trial of Pembrolizumab and Concurrent Chemoradiation Therapy for Limited-Stage SCLC. Journal of Thoracic Oncology, 2020, 15, 1919-1927.	1.1	53
5	I-SABR phase II randomized study of nivolumab immunotherapy and stereotactic ablative radiotherapy in early stage NSCLC: Interim analysis adverse effects Journal of Clinical Oncology, 2020, 38, 9035-9035.	1.6	8
6	Single-Fraction Stereotactic vs Conventional Multifraction Radiotherapy for Pain Relief in Patients With Predominantly Nonspine Bone Metastases. JAMA Oncology, 2019, 5, 872.	7.1	146
7	Clinical outcomes after intensity-modulated proton therapy with concurrent chemotherapy for inoperable non-small cell lung cancer. Radiotherapy and Oncology, 2019, 136, 136-142.	0.6	21
8	Time driven activity-based costing methods used in radiation oncology clinics Journal of Clinical Oncology, 2019, 37, 79-79.	1.6	1
9	Effect of high flow oxygen on exertional dyspnea in cancer patients: A double-blind randomized clinical trial Journal of Clinical Oncology, 2019, 37, 11600-11600.	1.6	0
10	Single-fraction stereotactic versus standard conventional multifraction radiation for predominantly non-spine bone metastases: A randomized phase II trial Journal of Clinical Oncology, 2019, 37, 11578-11578.	1.6	0
11	Phase 2 Study of Stereotactic Body Radiation Therapy and Stereotactic Body Proton Therapy for High-Risk, Medically Inoperable, Early-Stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 101, 558-563.	0.8	55
12	Patient-reported lung symptoms as an early signal of impending radiation pneumonitis in patients with non-small cell lung cancer treated with chemoradiation: an observational study. Quality of Life Research, 2018, 27, 1563-1570.	3.1	12
13	Association of Long-term Outcomes and Survival With Multidisciplinary Salvage Treatment for Local and Regional Recurrence After Stereotactic Ablative Radiotherapy for Early-Stage Lung Cancer. JAMA Network Open, 2018, 1, e181390.	5.9	48
14	Nomograms incorporating genetic variants in <scp>BMP</scp> /Smad4/Hamp pathway to predict disease outcomes after definitive radiotherapy for nonâ€small cell lung cancer. Cancer Medicine, 2018, 7, 2247-2255.	2.8	4
15	Long-term outcome of phase I/II prospective study of dose-escalated proton therapy for early-stage non-small cell lung cancer. Radiotherapy and Oncology, 2017, 122, 274-280.	0.6	38
16	Long-Term Outcomes of Salvage Stereotactic AblativeÂRadiotherapy for Isolated Lung Recurrence of Non–Small Cell Lung Cancer: A Phase II Clinical Trial. Journal of Thoracic Oncology, 2017, 12, 983-992.	1.1	51
17	The Pulmonary Fibrosis Associated MUC5B Promoter Polymorphism Is Prognostic of the Overall Survival in Patients with Non–Small Cell Lung Cancer (NSCLC) Receiving Definitive Radiotherapy. Translational Oncology, 2017, 10, 197-202.	3.7	7
18	Stereotactic Ablative Radiation Therapy is Highly Safe and Effective for Elderly Patients With Early-stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 98, 900-907.	0.8	37

Melenda Jeter

#	Article	IF	CITATIONS
19	Proton Beam Radiotherapy and Concurrent Chemotherapy for Unresectable Stage III Non–Small Cell Lung Cancer. JAMA Oncology, 2017, 3, e172032.	7.1	119
20	Comparative Outcomes After Definitive Chemoradiotherapy Using Proton Beam Therapy Versus Intensity Modulated Radiation Therapy for Esophageal Cancer: A Retrospective, Single-Institutional Analysis. International Journal of Radiation Oncology Biology Physics, 2017, 99, 667-676.	0.8	79
21	Salvage guideline for local-regional failure after stereotactic ablative radiotherapy for early-stage non-small cell lung cancer Journal of Clinical Oncology, 2017, 35, 8501-8501.	1.6	3
22	Polymorphisms in BMP2/BMP4, with estimates of mean lung dose, predict radiation pneumonitis among patients receiving definitive radiotherapy for non-small cell lung cancer. Oncotarget, 2017, 8, 43080-43090.	1.8	9
23	Measuring cost in the value equation using time-driven activity-based costing (TDABC) at The University of Texas MD Anderson Cancer Center, Division of Radiation Oncology Journal of Clinical Oncology, 2017, 35, e18305-e18305.	1.6	Ο
24	Normal-lung uptake of fluorodeoxyglucose, patient-reported symptoms, and clinician-rated radiation pneumonitis in patients with non-small cell lung cancer treated with chemoradiation Journal of Clinical Oncology, 2016, 34, e20028-e20028.	1.6	0