Rahul C Deo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3732390/publications.pdf

Version: 2024-02-01

58 papers

7,580 citations

32 h-index 56 g-index

66 all docs 66 docs citations

66 times ranked 13570 citing authors

#	Article	IF	CITATIONS
1	Machine Learning in Medicine. Circulation, 2015, 132, 1920-1930.	1.6	1,923
2	Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction. Circulation, 2015, 131, 269-279.	1.6	763
3	Type 2 Innate Signals Stimulate Fibro/Adipogenic Progenitors to Facilitate Muscle Regeneration. Cell, 2013, 153, 376-388.	28.9	676
4	Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation, 2018, 138, 1623-1635.	1.6	563
5	Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature, 2012, 487, 491-495.	27.8	349
6	Metabolic Signatures of Exercise in Human Plasma. Science Translational Medicine, 2010, 2, 33ra37.	12.4	337
7	A Rapid Method for Directed Gene Knockout for Screening in GO Zebrafish. Developmental Cell, 2018, 46, 112-125.e4.	7.0	275
8	Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature, 2011, 470, 95-100.	27.8	258
9	Research Priorities for Heart Failure With Preserved Ejection Fraction. Circulation, 2020, 141, 1001-1026.	1.6	239
10	Programming human pluripotent stem cells into white and brown adipocytes. Nature Cell Biology, 2012, 14, 209-219.	10.3	209
11	Induced Pluripotent Stem Cell Differentiation Enables Functional Validation of GWAS Variants in Metabolic Disease. Cell Stem Cell, 2017, 20, 547-557.e7.	11.1	129
12	Phenotypic Spectrum of Heart Failure with Preserved Ejection Fraction. Heart Failure Clinics, 2014, 10, 407-418.	2.1	126
13	Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist. JACC: Cardiovascular Imaging, 2020, 13, 2017-2035.	5.3	123
14	Recommendations for Reporting Machine Learning Analyses in Clinical Research. Circulation: Cardiovascular Quality and Outcomes, 2020, 13, e006556.	2.2	112
15	Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery. Circulation: Cardiovascular Quality and Outcomes, 2019, 12, e005289.	2.2	111
16	Perinatal Licensing of Thermogenesis by IL-33 and ST2. Cell, 2016, 166, 841-854.	28.9	99
17	RNA Sequencing of Mouse Sinoatrial Node Reveals an Upstream Regulatory Role for Islet-1 in Cardiac Pacemaker Cells. Circulation Research, 2015, 116, 797-803.	4.5	95
18	Genetic Differences between the Determinants of Lipid Profile Phenotypes in African and European Americans: The Jackson Heart Study. PLoS Genetics, 2009, 5, e1000342.	3.5	94

#	Article	IF	Citations
19	An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish. ELife, 2015, 4, e09406.	6.0	83
20	Effects of the Absence of Apolipoprotein E on Lipoproteins, Neurocognitive Function, and Retinal Function. JAMA Neurology, 2014, 71, 1228.	9.0	79
21	Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms. Nature Communications, 2021, 12, 2726.	12.8	73
22	Phenomapping for the Identification of Hypertensive Patients with the Myocardial Substrate for Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Translational Research, 2017, 10, 275-284.	2.4	61
23	Single-Nucleotide Polymorphisms in LPA Explain Most of the Ancestry-Specific Variation in Lp(a) Levels in African Americans. PLoS ONE, 2011, 6, e14581.	2.5	60
24	A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy. Nature Communications, 2021, 12, 2725.	12.8	56
25	Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish. DMM Disease Models and Mechanisms, 2011, 4, 400-410.	2.4	55
26	Coronary Microvascular Dysfunction, Left Ventricular Remodeling, and Clinical Outcomes in Patients With Chronic Kidney Impairment. Circulation, 2020, 141, 21-33.	1.6	54
27	Interpreting Metabolomic Profiles using Unbiased Pathway Models. PLoS Computational Biology, 2010, 6, e1000692.	3.2	52
28	An Admixture Scan in 1,484 African American Women with Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 3110-3117.	2.5	46
29	An International Multicenter Evaluation of Inheritance Patterns, Arrhythmic Risks, and Underlying Mechanisms of <i>CASQ2 </i> -Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2020, 142, 932-947.	1.6	44
30	A High-Density Admixture Scan in 1,670 African Americans with Hypertension. PLoS Genetics, 2007, 3, e196.	3.5	40
31	Prioritizing causal disease genes using unbiased genomic features. Genome Biology, 2014, 15, 534.	8.8	40
32	Recommendations for Statistical Reporting in Cardiovascular Medicine: A Special Report From the American Heart Association. Circulation, 2021, 144, e70-e91.	1.6	36
33	Learning About Machine Learning: The Promise and Pitfalls of Big Data and the Electronic Health Record. Circulation: Cardiovascular Quality and Outcomes, 2016, 9, 618-620.	2.2	30
34	Fine-Mapping in African Americans of 8 Recently Discovered Genetic Loci for Plasma Lipids. Circulation: Cardiovascular Genetics, 2010, 3, 358-364.	5.1	28
35	PIEZO1 mediates a mechanothrombotic pathway in diabetes. Science Translational Medicine, 2022, 14 , eabk 1707 .	12.4	28
36	Alternative Splicing, Internal Promoter, Nonsense-Mediated Decay, or All Three. Circulation: Cardiovascular Genetics, 2016, 9, 419-425.	5.1	27

#	Article	IF	CITATIONS
37	Bundle Branch Re-Entrant VentricularÂTachycardia. JACC: Clinical Electrophysiology, 2017, 3, 276-288.	3.2	27
38	The zebrafish:scalable <i>in vivo</i> modeling for systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2011, 3, 335-346.	6.6	26
39	Activation of IRF1 in Human Adipocytes Leads to Phenotypes Associated with Metabolic Disease. Stem Cell Reports, 2017, 8, 1164-1173.	4.8	19
40	Adipocyte JAK2 Regulates Hepatic Insulin Sensitivity Independently of Body Composition, Liver Lipid Content, and Hepatic Insulin Signaling. Diabetes, 2018, 67, 208-221.	0.6	19
41	Targeted Deep Sequencing Reveals No Definitive Evidence for Somatic Mosaicism in Atrial Fibrillation. Circulation: Cardiovascular Genetics, 2015, 8, 50-57.	5.1	15
42	Machine Learning in Medicine. Circulation, 2020, 142, 1521-1523.	1.6	13
43	The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia. Nature Structural and Molecular Biology, 2020, 27, 1142-1151.	8.2	13
44	Moving Genomics to Routine Care. Circulation Genomic and Precision Medicine, 2020, 13, 406-416.	3.6	11
45	Coronary Arteries and the Cell Count. Circulation, 2019, 139, 1228-1233.	1.6	9
46	Pattern Specification and Immune Response Transcriptional Signatures of Pericardial and Subcutaneous Adipose Tissue. PLoS ONE, 2011, 6, e26092.	2.5	6
47	A Machine Learning Model for the Systematic Identification of Wild-Type Transthyretin Cardiomyopathy. Journal of Cardiac Failure, 2019, 25, S53-S54.	1.7	5
48	Cardiovascular Risk Assessment Using Artificial Intelligence-Enabled Event Adjudication and Hematologic Predictors. Circulation: Cardiovascular Quality and Outcomes, 2022, 15, 101161CIRCOUTCOMES121008007.	2.2	5
49	Clinical Screening and Genetic Testing. Clinics in Laboratory Medicine, 2010, 30, 775-784.	1.4	3
50	Response by Zhang and Deo to Letter Regarding Article, "Fully Automated Echocardiogram Interpretation in Clinical Practice: Feasibility and Diagnostic Accuracy― Circulation, 2019, 139, 1648-1649.	1.6	3
51	Ecosystem Barriers to Innovation Adoption in Clinical Practice. Trends in Molecular Medicine, 2021, 27, 5-7.	6.7	3
52	The genetics of cardiomyopathies: What clinicians should know. Current Heart Failure Reports, 2007, 4, 229-235.	3.3	2
53	Pathways of the Heart. Circulation: Cardiovascular Genetics, 2009, 2, 303-305.	5.1	2
54	Clinical Screening and Genetic Testing. Heart Failure Clinics, 2010, 6, 231-238.	2.1	2

#	Article	IF	CITATION
55	A Novel Role for Piezo1 in Diabetes-Associated Thrombosis. Biophysical Journal, 2020, 118, 398a.	0.5	1
56	Editorial commentary: Induced pluripotent stem cell (IPSC) cardiomyocytes: My kingdom for a useful disease model!. Trends in Cardiovascular Medicine, 2016, 26, 673-674.	4.9	0
57	MAGUS: A Shared Tool for the Genetic Community. Circulation: Cardiovascular Quality and Outcomes, 2018, 11, e005006.	2.2	O
58	Abstract 64: An Integrated Model for Titin Truncation Mutation Interpretation. Circulation Research, 2016, 119, .	4.5	0