Zheyu Fang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/373221/zheyu-fang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

119	10,01 7 citations	42	100
papers		h-index	g-index
130	11,314	9.3	6.21
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
119	Field distribution of the <i>Z</i>₂ topological edge state revealed by cathodoluminescence nanoscopy. <i>Opto-Electronic Advances</i> , 2022 , 5, 210015-210015	6.5	
118	Phonon scattering and exciton localization: molding exciton flux in two dimensional disorder energy landscape. <i>ELight</i> , 2021 , 1,		15
117	Plasmonic Modulation of Valleytronic Emission in Two-Dimensional Transition Metal Dichalcogenides. <i>Advanced Functional Materials</i> , 2021 , 31, 2010234	15.6	10
116	Selectively steering photon spin angular momentum via electron-induced optical spin Hall effect. <i>Science Advances</i> , 2021 , 7,	14.3	4
115	Self-Assembly of N,N?-Di(n-butyl)-1,3,8,10-tetramethylquinacridone Governed by Metallic Surface Features of a Ag(110) Substrate. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 10151-10158	3.8	O
114	Programmable Self-Assembly of Gold Nanoarrows via Regioselective Adsorption. <i>Research</i> , 2021 , 2021, 9762095	7.8	1
113	Exotic physical properties of 2D materials modulated by moir uperlattices. <i>Materials Advances</i> , 2021 , 2, 5542-5559	3.3	1
112	Deep subwavelength control of valley polarized cathodoluminescence in h-BN/WSe/h-BN heterostructure. <i>Nature Communications</i> , 2021 , 12, 291	17.4	9
111	Helically Grooved Gold Nanoarrows: Controlled Fabrication, Superhelix, and Transcribed Chiroptical Switching. <i>CCS Chemistry</i> , 2021 , 3, 2473-2484	7.2	2
110	Remote Lightening and Ultrafast Transition: Intrinsic Modulation of Exciton Spatiotemporal Dynamics in Monolayer MoS. <i>ACS Nano</i> , 2020 , 14, 6897-6905	16.7	8
109	Efficient Raman Enhancement in Molybdenum Disulfide by Tuning the Interlayer Spacing. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 12, 28474-28483	9.5	11
108	Controllable inversion symmetry breaking in single layer graphene induced by sub-lattice contrasted charge polarization. <i>Carbon</i> , 2020 , 163, 63-69	10.4	1
107	Tailoring ZnO Spontaneous Emission with Plasmonic Radiative Local Density of States Using Cathodoluminescence Microscopy. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 13886-13893	3.8	4
106	Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe. <i>Nanoscale</i> , 2020 , 12, 5906-5913	7.7	14
105	Bi-channel near- and far-field optical vortex generator based on a single plasmonic metasurface. <i>Photonics Research</i> , 2020 , 8, 986	6	9
104	Graphene Acoustic Phonon-Mediated Pseudo-Landau Levels Tailoring Probed by Scanning Tunneling Spectroscopy. <i>Small</i> , 2020 , 16, e1905202	11	2
103	Spontaneous Emission of Plasmon-Exciton Polaritons Revealed by Ultrafast Nonradiative Decays. <i>Laser and Photonics Reviews</i> , 2020 , 14, 2000233	8.3	5

(2018-2020)

Light-Controlled Near-Field Energy Transfer in Plasmonic Metasurface Coupled MoS Monolayer. <i>Small</i> , 2020 , 16, e2003539	11	6
Photoluminescence enhancement of MoS/CdSe quantum rod heterostructures induced by energy transfer and exciton-exciton annihilation suppression. <i>Nanoscale Horizons</i> , 2020 , 5, 971-977	10.8	4
Electron transfer and cascade relaxation dynamics of graphene quantum dots/MoS2 monolayer mixed-dimensional van der Waals heterostructures. <i>Materials Today</i> , 2019 , 24, 10-16	21.8	40
Self-Healing Originated van der Waals Homojunctions with Strong Interlayer Coupling for High-Performance Photodiodes. <i>ACS Nano</i> , 2019 , 13, 3280-3291	16.7	43
Improving the Water Oxidation Efficiency with a Light-Induced Electric Field in Nanograting Photoanodes. <i>Nano Letters</i> , 2019 , 19, 6133-6139	11.5	10
Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/CuO core-shell nanorods. <i>Nanoscale</i> , 2019 , 11, 16445-16454	7.7	28
Plasmonic-modulated dissipative-driven multiqubit entanglement under asymmetric detuning. <i>Physical Review B</i> , 2019 , 100,	3.3	2
Plasmonic Circular Dichroism of Gold Nanoparticle Based Nanostructures. <i>Advanced Optical Materials</i> , 2019 , 7, 1801590	8.1	23
Self-Learning Perfect Optical Chirality via a Deep Neural Network. <i>Physical Review Letters</i> , 2019 , 123, 213902	7.4	44
Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy. <i>Nano Letters</i> , 2019 , 19, 775-780	11.5	24
Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. <i>Light: Science and Applications</i> , 2019 , 8, 9	16.7	109
Mode Controlling of Surface Plasmon Polaritons by Geometric Phases. <i>Plasmonics</i> , 2019 , 14, 785-790	2.4	O
Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures. <i>ACS Nano</i> , 2018 , 12, 3908-3916	16.7	35
Plasmonic-Functionalized Broadband Perovskite Photodetector. <i>Advanced Optical Materials</i> , 2018 , 6, 1701271	8.1	63
Spin-Controlled Integrated Near- and Far-Field Optical Launcher. <i>Advanced Functional Materials</i> , 2018 , 28, 1705503	15.6	30
Reveal and Control of Chiral Cathodoluminescence at Subnanoscale. <i>Nano Letters</i> , 2018 , 18, 567-572	11.5	37
Hybrid Au-Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrogenation through Visible Light Irradiation and Surface-Enhanced Raman Scattering. <i>Journal of the American Chemical Society</i> , 2018 , 140, 864-867	16.4	153
Enantiomorphing Chiral Plasmonic Nanostructures: A Counterintuitive Sign Reversal of the Nonlinear Circular Dichroism. <i>Advanced Optical Materials</i> , 2018 , 6, 1800153	8.1	12
	Photoluminescence enhancement of MoS/CdSe quantum rod heterostructures induced by energy transfer and exciton-exciton annihilation suppression. <i>Nanoscale Horizons</i> , 2020, 5, 971-977 Electron transfer and cascade relaxation dynamics of graphene quantum dots/MoS2 monolayer mixed-dimensional van der Waals heterostructures. <i>Materials Today</i> , 2019, 24, 10-16 Self-Healing Originated van der Waals Homojunctions with Strong Interlayer Coupling for High-Performance Photodiodes. <i>ACS Nano</i> , 2019, 13, 3280-3291 Improving the Water Oxidation Efficiency with a Light-induced Electric Field in Nanograting Photoanodes. <i>ACS Nano</i> , 2019, 13, 3280-3291 Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/CuO core-shell nanorods. <i>Nanoscale</i> , 2019, 11, 16445-16454 Plasmonic-modulated dissipative-driven multiqubit entanglement under asymmetric detuning. <i>Physical Review B</i> , 2019, 100. Plasmonic Circular Dichroism of Gold Nanoparticle Based Nanostructures. <i>Advanced Optical Materials</i> , 2019, 7, 1801590 Self-Learning Perfect Optical Chirality via a Deep Neural Network. <i>Physical Review Letters</i> , 2019, 123, 213902 Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy. <i>Nano Letters</i> , 2019, 19, 775-780 Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. <i>Light: Science and Applications</i> , 2019, 8, 9 Mode Controlling of Surface Plasmon Polaritons by Geometric Phases. <i>Plasmonics</i> , 2019, 14, 785-790 Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures. <i>ACS Nano</i> , 2018, 12, 3908-3916 Plasmonic-Functionalized Broadband Perovskite Photodetector. <i>Advanced Optical Materials</i> , 2018, 6, 1701271 Spin-Controlled Integrated Near- and Far-Field Optical Launcher. <i>Advanced Functional Materials</i> , 2018, 8, 1705503 Reveal and Control of Chiral Cathodoluminescence at Subnanoscale. <i>Nano Letters</i> , 2018, 18, 567-572 Hybrid Au-Ag Nanostructures for Enhanced Plasmon-Driven Catalytic Selective Hydrog	Photoluminescence enhancement of MoS/CdSe quantum rod heterostructures induced by energy transfer and exciton-exciton annihilation suppression. <i>Nanoscale Horizons</i> , 2020, 5, 971-977 Electron transfer and cascade relaxation dynamics of graphene quantum dots/MoS2 monolayer mixed-dimensional van der Waals heterostructures. <i>Materials Today</i> , 2019, 24, 10-16 Self-Healing Originated van der Waals Homojunctions with Strong Interlayer Coupling for High-Performance Photodiodes. <i>ACS Nano</i> , 2019, 13, 3280-3291 Improving the Water Oxidation Efficiency with a Light-Induced Electric Field in Nanograting Photoanodes. <i>Nano Letters</i> , 2019, 19, 6133-6139 Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/CuO core-shell nanorods. <i>Nanoscale</i> , 2019, 11, 16445-16454 Plasmonic-modulated dissipative-driven multiqubit entanglement under asymmetric detuning. <i>Physical Review B</i> , 2019, 100, Plasmonic Circular Dichroism of Gold Nanoparticle Based Nanostructures. <i>Advanced Optical Materials</i> , 2019, 7, 1801590 Self-Learning Perfect Optical Chirality via a Deep Neural Network. <i>Physical Review Letters</i> , 2019, 123, 213902 Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy. <i>Nano Letters</i> , 2019, 19, 775-780 Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. <i>Light: Science and Applications</i> , 2019, 8, 9 Mode Controlling of Surface Plasmon Polaritons by Geometric Phases. <i>Plasmonics</i> , 2019, 14, 785-790 244 Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures. <i>ACS Nano</i> , 2018, 12, 3908-3916 Plasmonic-Functionalized Broadband Perovskite Photodetector. <i>Advanced Optical Materials</i> , 2018, 6, 1701271 Spin-Controlled Integrated Near- and Far-Field Optical Launcher. <i>Advanced Functional Materials</i> , 2018, 28, 1705503 Reveal and Control of Chiral Cathodoluminescence at Subnanoscale. <i>Nano Letters</i> , 2018, 18, 567-572 Enantiomorphing Chiral Plasmonic Nanostructures: A Counterintuitive Sign

84	Tailoring MoS Valley-Polarized Photoluminescence with Super Chiral Near-Field. <i>Advanced Materials</i> , 2018 , 30, e1801908	24	66
83	Chiral Nanomaterials: Enantiomorphing Chiral Plasmonic Nanostructures: A Counterintuitive Sign Reversal of the Nonlinear Circular Dichroism (Advanced Optical Materials 14/2018). <i>Advanced Optical Materials</i> , 2018 , 6, 1870057	8.1	1
82	Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures. <i>Opto-Electronic Advances</i> , 2018 , 1, 18000701-18000711	6.5	9
81	Highly Efficient and Stable Self-Powered Ultraviolet and Deep-Blue Photodetector Based on Cs2AgBiBr6/SnO2 Heterojunction. <i>Advanced Optical Materials</i> , 2018 , 6, 1800811	8.1	88
80	Plasmonics of 2D Nanomaterials: Properties and Applications. Advanced Science, 2017, 4, 1600430	13.6	108
79	Lighthatter interaction of 2D materials: Physics and device applications. <i>Chinese Physics B</i> , 2017 , 26, 036802	1.2	14
78	Excitonic localization at macrostep edges in AlGaN/AlGaN multiple quantum wells. <i>Superlattices and Microstructures</i> , 2017 , 104, 397-401	2.8	14
77	. IEEE Photonics Journal, 2017 , 9, 1-6	1.8	3
76	Valley Pseudospin with a Widely Tunable Bandgap in Doped Honeycomb BN Monolayer. <i>Nano Letters</i> , 2017 , 17, 2079-2087	11.5	29
75	Revealing the spin optics in conic-shaped metasurfaces. <i>Physical Review B</i> , 2017 , 95,	3.3	37
74	Self-Assembled Au/CdSe Nanocrystal Clusters for Plasmon-Mediated Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1700803	24	258
73	Tailoring MoS Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling. ACS Nano, 2017, 11, 1165-11	7:1 6.7	88
72	Plasmonic Chiral Nanostructures: Chiroptical Effects and Applications. <i>Advanced Optical Materials</i> , 2017 , 5, 1700040	8.1	97
71	Temperature dependent Raman and photoluminescence of vertical WS2/MoS2 monolayer heterostructures. <i>Science Bulletin</i> , 2017 , 62, 16-21	10.6	25
7°	Plasmonic hot electron tunneling photodetection in vertical Augraphene hybrid nanostructures. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1600148	8.3	45
69	Near-Field Raman Spectroscopy with Aperture Tips. <i>Chemical Reviews</i> , 2017 , 117, 5095-5109	68.1	42
68	Controlled growth and shape-directed self-assembly of gold nanoarrows. Science Advances, 2017, 3, e1	704.1383	3 51

(2015-2017)

66	Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS Monolayers. <i>ACS Nano</i> , 2017 , 11, 9720-9727	16.7	68
65	Plasmonic silicon quantum dots extend photodetection into mid-infrared range. <i>Science Bulletin</i> , 2017 , 62, 1430-1431	10.6	3
64	Enhanced optical performance of multifocal metalens with conic shapes. <i>Light: Science and Applications</i> , 2017 , 6, e17071	16.7	35
63	Electron Transfer: Ultrafast Plasmonic Hot Electron Transfer in Au Nanoantenna/MoS2 Heterostructures (Adv. Funct. Mater. 35/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 6393-6393	15.6	
62	Ultrafast Plasmonic Hot Electron Transfer in Au Nanoantenna/MoS2 Heterostructures. <i>Advanced Functional Materials</i> , 2016 , 26, 6394-6401	15.6	136
61	Planar plasmonic chiral nanostructures. <i>Nanoscale</i> , 2016 , 8, 3900-5	7.7	87
60	Performance Boosting of Flexible ZnO UV Sensors with Rational Designed Absorbing Antireflection Layer and Humectant Encapsulation. <i>ACS Applied Materials & Designed Absorbing Antireflection Designed Absorbing Designed Designed</i>	9.5	21
59	Active Control of Plasmon E xciton Coupling in MoS2 A g Hybrid Nanostructures. <i>Advanced Optical Materials</i> , 2016 , 4, 1463-1469	8.1	55
58	Spin-controlled directional launching of surface plasmons at the subwavelength scale. <i>Chinese Physics B</i> , 2016 , 25, 087302	1.2	0
57	Active Control of Graphene-Based Unidirectional Surface Plasmon Launcher. <i>ACS Photonics</i> , 2015 , 2, 1135-1140	6.3	42
56	Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation. <i>Scientific Reports</i> , 2015 , 5, 117	7939	58
55	Surface plasmon resonance enhanced light absorption of Au decorated composition-tuned ZnO/ZnxCd1\(\mathbb{Z}\) core/shell nanowires for efficient H2 production. <i>Applied Physics Letters</i> , 2015 , 106, 123904	3.4	13
54	Plasmon-enhanced photodetection in nanostructures. Nanotechnology Reviews, 2015, 4,	6.3	2
53	Well-oriented epitaxial gold nanotriangles and bowties on MoS2 for surface-enhanced Raman scattering. <i>Nanoscale</i> , 2015 , 7, 9153-7	7.7	29
52	Broadband photodetection in a microfiber-graphene device. <i>Optics Express</i> , 2015 , 23, 25209-16	3.3	15
51	Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation. <i>Applied Physics Letters</i> , 2015 , 106, 161106	3.4	14
50	Active Light Control of the MoS2 Monolayer Exciton Binding Energy. ACS Nano, 2015, 9, 10158-64	16.7	153
49	Plasmonics: Magnetic Plasmonic Fano Resonance at Optical Frequency (Small 18/2015). <i>Small</i> , 2015 , 11, 2102-2102	11	1

48	Metasurfaces: Terahertz Broadband Low-Reflection Metasurface by Controlling Phase Distributions (Advanced Optical Materials 10/2015). <i>Advanced Optical Materials</i> , 2015 , 3, 1478-1478	8.1	1
47	Substrate-induced interfacial plasmonics for photovoltaic conversion. <i>Scientific Reports</i> , 2015 , 5, 14497	4.9	21
46	Graphene Quantum Dots Doping of MoS2 Monolayers. Advanced Materials, 2015, 27, 5235-40	24	135
45	Terahertz Broadband Low-Reflection Metasurface by Controlling Phase Distributions. <i>Advanced Optical Materials</i> , 2015 , 3, 1405-1410	8.1	82
44	Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. <i>Nanoscale</i> , 2015 , 7, 4482	-8 7.7	142
43	Magnetic plasmonic Fano resonance at optical frequency. <i>Small</i> , 2015 , 11, 2177-81	11	61
42	Focusing surface plasmon polaritons in archimedesRspiral nanostructure. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2015 , 64, 194201	0.6	4
41	Active tunable absorption enhancement with graphene nanodisk arrays. <i>Nano Letters</i> , 2014 , 14, 299-30	411.5	477
40	Two-dimensional heterostructures: fabrication, characterization, and application. <i>Nanoscale</i> , 2014 , 6, 12250-72	7.7	266
39	Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. <i>Advanced Materials</i> , 2014 , 26, 6467-71	24	429
38	Plasmon hybridization model generalized to conductively bridged nanoparticle dimers. <i>Journal of Chemical Physics</i> , 2013 , 139, 064310	3.9	26
37	Solar vapor generation enabled by nanoparticles. <i>ACS Nano</i> , 2013 , 7, 42-9	16.7	882
36	Gated tunability and hybridization of localized plasmons in nanostructured graphene. <i>ACS Nano</i> , 2013 , 7, 2388-95	16.7	534
35	Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. <i>Nano Letters</i> , 2013 , 13, 1736-42	11.5	346
34	Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. <i>Nature Communications</i> , 2013 , 4, 1643	17.4	425
33	Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. <i>Advanced Materials</i> , 2013 , 25, 2452-6	24	1859
32	Plasmonic properties and device in nanostructures. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 112, 15-22	2.6	1
31	Plasmonics in nanostructures. <i>Advanced Materials</i> , 2013 , 25, 3840-56	24	105

(2009-2013)

30	Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters. <i>Nanoscale</i> , 2013 , 5, 9897-901	7.7	42	
29	Plasmon-induced doping of graphene. <i>ACS Nano</i> , 2012 , 6, 10222-8	16.7	317	
28	Graphene-antenna sandwich photodetector. <i>Nano Letters</i> , 2012 , 12, 3808-13	11.5	540	
27	Tunable wide-angle plasmonic perfect absorber at visible frequencies. <i>Physical Review B</i> , 2012 , 85,	3.3	114	
26	Plasmonic focusing in symmetry broken nanocorrals. <i>Nano Letters</i> , 2011 , 11, 893-7	11.5	124	
25	Removing a wedge from a metallic nanodisk reveals a fano resonance. <i>Nano Letters</i> , 2011 , 11, 4475-9	11.5	181	
24	Self-assembly of tetrapod-shaped CdS nanostructures into 3D networks by a transverse growth process. <i>Nanotechnology</i> , 2011 , 22, 175601	3.4	15	
23	Plasmonic coupling of bow tie antennas with Ag nanowire. <i>Nano Letters</i> , 2011 , 11, 1676-80	11.5	122	
22	PLASMONIC FOCUSING BASED ON CdS NANORIBBON. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2010 , 19, 729-735	0.8		
21	Color-changeable properties of plasmonic waveguides based on Se-doped CdS nanoribbons. <i>Physical Review B</i> , 2010 , 82,	3.3	16	
20	Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano, 2010, 4, 75-82	16.7	53	
19	Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens. <i>Optics Express</i> , 2010 , 18, 14762-7	3.3	19	
18	Antenna-mediated coupling of light into Ag nanowire. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 7171-4	1.3		
17	Homogeneous epitaxial growth of N,NRdi(n-butyl)quinacridone thin films on Ag(110). <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 7162-6	1.3		
16	Surface Plasmon Polariton Enhancement in Silver Nanowire Nanoantenna Structure. <i>Plasmonics</i> , 2010 , 5, 57-62	2.4	25	
15	Hybrid Plasmonic Waveguide Based on Tapered Dielectric Nanoribbon: Excitation and Focusing. <i>Plasmonics</i> , 2010 , 5, 207-212	2.4	22	
14	Applications of Surface Plasmon Polariton in the Au Nanocircuit. <i>Journal of the Korean Physical Society</i> , 2010 , 56, 1725-1728	0.6	3	
13	Focusing surface plasmon polariton trapping of colloidal particles. <i>Applied Physics Letters</i> , 2009 , 94, 063	33046	24	

12	DFT Study of Structural and Thermodynamic Properties for Polybrominated 5,10-Dihydrophenazines. <i>International Journal of Thermophysics</i> , 2009 , 30, 1875-1890	2.1	5
11	Optical waveguide behavior of Se-doped and undoped CdS one-dimensional nanostructures using near-field optical microscopy 2009 , 52, 26-30		
10	Surface plasmon-enhanced micro-cylinder mode in photonic quasi-crystal. <i>Journal of Microscopy</i> , 2009 , 235, 138-43	1.9	8
9	Influence of Mn doping on the microstructure and optical properties of CdS. <i>Journal of Alloys and Compounds</i> , 2009 , 486, 702-705	5.7	50
8	Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide. <i>Optics Express</i> , 2009 , 17, 20327-32	3.3	17
7	Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy. <i>Applied Physics Letters</i> , 2008 , 93, 073306	3.4	24
6	Characterization and catalysis studies of CuO/CeO2 model catalysts. <i>Catalysis Communications</i> , 2006 , 7, 701-704	3.2	26
5	NEAR-FIELD SCANNING OPTICAL MICROSCOPE WITH THE APPLICATION OF SURFACE PLASMA RESONANCE (SPR). <i>Surface Review and Letters</i> , 2005 , 12, 489-492	1.1	
4	THE INFLUENCE OF HUMIDITY ON THE SHEAR FORCE BETWEEN TIP AND SAMPLE IN NSOM USING PIEZOELECTRIC FORK. <i>Surface Review and Letters</i> , 2005 , 12, 355-358	1.1	
3	Molding 2D Exciton Flux toward Room Temperature Excitonic Devices. <i>Advanced Materials Technologies</i> ,2200032	6.8	O
2	Abnormal intensity and polarization of Raman scattered light at edges of layered MoS2. <i>Nano Research</i> ,1	10	О
1	Inverse Design of Unidirectional Transmission Nanostructures Based on Unsupervised Machine Learning. <i>Advanced Optical Materials</i> ,2200127	8.1	