
Anders Poulsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3731914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutrient content in plant-based protein products intended for food composition databases. Journal of Food Composition and Analysis, 2022, 106, 104332.	3.9	21
2	Strategic Design of Catalytic Lysineâ€Targeting Reversible Covalent BCRâ€ABL Inhibitors**. Angewandte Chemie, 2021, 133, 17268-17274.	2.0	5
3	Fragment-based lead discovery of indazole-based compounds as AXL kinase inhibitors. Bioorganic and Medicinal Chemistry, 2021, 49, 116437.	3.0	7
4	Stepwise Evolution of Fragment Hits against MAPK Interacting Kinases 1 and 2. Journal of Medicinal Chemistry, 2020, 63, 621-637.	6.4	7
5	Discovery of a Novel Mycobacterial Fâ€ATP Synthase Inhibitor and its Potency in Combination with Diarylquinolines. Angewandte Chemie, 2020, 132, 13397-13406.	2.0	4
6	Targeting the Bacterial Epitranscriptome for Antibiotic Development: Discovery of Novel tRNA-(N ¹ G37) Methyltransferase (TrmD) Inhibitors. ACS Infectious Diseases, 2019, 5, 326-335.	3.8	33
7	Discovery of Irreversible Inhibitors Targeting Histone Methyltransferase, SMYD3. ACS Medicinal Chemistry Letters, 2019, 10, 978-984.	2.8	20
8	Intranasal administration of a stapled relaxinâ€3 mimetic has anxiolytic―and antidepressantâ€like activity in rats. British Journal of Pharmacology, 2019, 176, 3899-3923.	5.4	15
9	Fragment-based Discovery of a Small-Molecule Protein Kinase C-iota Inhibitor Binding Post-kinase Domain Residues. ACS Medicinal Chemistry Letters, 2019, 10, 318-323.	2.8	7
10	Optimization of Selective Mitogen-Activated Protein Kinase Interacting Kinases 1 and 2 Inhibitors for the Treatment of Blast Crisis Leukemia. Journal of Medicinal Chemistry, 2018, 61, 4348-4369.	6.4	37
11	Fragment-Based Drug Discovery of Potent Protein Kinase C lota Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 4386-4396.	6.4	23
12	Novel Acetamide Indirectly Targets Mycobacterial Transporter MmpL3 by Proton Motive Force Disruption. Frontiers in Microbiology, 2018, 9, 2960.	3.5	28
13	Design and synthesis of potent dual inhibitors of JAK2 and HDAC based on fusing the pharmacophores of XL019 and vorinostat. European Journal of Medicinal Chemistry, 2018, 158, 593-619.	5.5	33
14	Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4. Biochemical Journal, 2018, 475, 2043-2055.	3.7	35
15	Merging of ruxolitinib and vorinostat leads to highly potent inhibitors of JAK2 and histone deacetylase 6 (HDAC6). Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2636-2640.	2.2	15
16	Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7119-E7128.	7.1	43
17	Discovery of dual GyrB/ParE inhibitors active against Gram-negative bacteria. European Journal of Medicinal Chemistry, 2018, 157, 610-621.	5.5	10
18	Smyd2 versus Smyd3: structure-based analysis of small-molecule binding selectivity. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, a470-a470.	0.1	0

ANDERS POULSEN

#	Article	IF	CITATIONS
19	Towards Selective Mycobacterial ClpP1P2 Inhibitors with Reduced Activity against the Human Proteasome. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	25
20	Discovery and characterisation of the automethylation properties of PRDM9. Biochemical Journal, 2017, 474, 971-982.	3.7	11
21	Design and Synthesis of Ligand Efficient Dual Inhibitors of Janus Kinase (JAK) and Histone Deacetylase (HDAC) Based on Ruxolitinib and Vorinostat. Journal of Medicinal Chemistry, 2017, 60, 8336-8357.	6.4	82
22	Scaffold Hopping and Optimization of Maleimide Based Porcupine Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 6678-6692.	6.4	19
23	Design and Synthesis of Janus Kinase 2 (JAK2) and Histone Deacetlyase (HDAC) Bispecific Inhibitors Based on Pacritinib and Evidence of Dual Pathway Inhibition in Hematological Cell Lines. Journal of Medicinal Chemistry, 2016, 59, 8233-8262.	6.4	78
24	Hydrocarbon stapled B chain analogues of relaxin-3 retain biological activity. Peptides, 2016, 84, 44-57.	2.4	17
25	Antiviral activities of peptide-based covalent inhibitors of the Enterovirus 71 3C protease. Scientific Reports, 2016, 6, 33663.	3.3	15
26	Miniature bovine pancreatic trypsin inhibitors (m-BPTIs) of the West Nile virus NS2B-NS3 protease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 194-200.	5.2	1
27	Structure–Activity Relationship Studies of Mitogen Activated Protein Kinase Interacting Kinase (MNK) 1 and 2 and BCR-ABL1 Inhibitors Targeting Chronic Myeloid Leukemic Cells. Journal of Medicinal Chemistry, 2016, 59, 3063-3078.	6.4	16
28	Peptidomimetic ethyl propenoate covalent inhibitors of the enterovirus 71 3C protease: a P2–P4 study. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 332-339.	5.2	10
29	Application of Fragmentâ€Based Drug Discovery against DNA Gyraseâ€B. ChemPlusChem, 2015, 80, 1250-1254	4.2.8	14
30	Identification of covalent active site inhibitors of dengue virus protease. Drug Design, Development and Therapy, 2015, 9, 6389.	4.3	25
31	Feedback regulation on PTEN/AKT pathway by the ER stress kinase PERK mediated by interaction with the Vault complex. Cellular Signalling, 2015, 27, 436-442.	3.6	31
32	Discovery and Optimization of a Porcupine Inhibitor. Journal of Medicinal Chemistry, 2015, 58, 5889-5899.	6.4	35
33	Pharmacophore Model for Wnt/Porcupine Inhibitors and Its Use in Drug Design. Journal of Chemical Information and Modeling, 2015, 55, 1435-1448.	5.4	21
34	Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy. Structure, 2015, 23, 2076-2086.	3.3	146
35	Target Mechanism-Based Whole-Cell Screening Identifies Bortezomib as an Inhibitor of Caseinolytic Protease in Mycobacteria. MBio, 2015, 6, e00253-15.	4.1	69
36	Probing the Binding Mechanism of Mnk Inhibitors by Docking and Molecular Dynamics Simulations. Biochemistry, 2015, 54, 32-46.	2.5	24

ANDERS POULSEN

#	Article	IF	CITATIONS
37	Characterization of the histone methyltransferase PRDM9 using biochemical, biophysical and chemical biology techniques. Biochemical Journal, 2014, 461, 323-334.	3.7	30
38	CHAPTER 5. Designed Macrocyclic Kinase Inhibitors. RSC Drug Discovery Series, 2014, , 141-205.	0.3	7
39	Structure and Ligand-Based Design of mTOR and PI3-Kinase Inhibitors Leading to the Clinical Candidates VS-5584 (SB2343) and SB2602. Journal of Chemical Information and Modeling, 2014, 54, 3238-3250.	5.4	24
40	Drug Design For Flavivirus Proteases: What Are We Missing?. Current Pharmaceutical Design, 2014, 20, 3422-3427.	1.9	30
41	Novel agmatine dipeptide inhibitors against the West Nile virus NS2B/NS3 protease: A P3 and N-cap optimization study. European Journal of Medicinal Chemistry, 2013, 62, 199-205.	5.5	22
42	Exploring the binding of peptidic West Nile virus NS2B–NS3 protease inhibitors by NMR. Antiviral Research, 2013, 97, 137-144.	4.1	33
43	Substrate-based peptidomimetic inhibitors of the Murray Valley encephalitis virus NS2B/NS3 serine protease: A P1–P4 SAR study. European Journal of Medicinal Chemistry, 2013, 68, 72-80.	5.5	3
44	Structure-based design of nitrogen-linked macrocyclic kinase inhibitors leading to the clinical candidate SB1317/TG02, a potent inhibitor of cyclin dependant kinases (CDKs), Janus kinase 2 (JAK2), and Fms-like tyrosine kinase-3 (FLT3). Journal of Molecular Modeling, 2013, 19, 119-130.	1.8	32
45	Fragment-Based Ligand Design of Novel Potent Inhibitors of Tankyrases. Journal of Medicinal Chemistry, 2013, 56, 4497-4508.	6.4	59
46	Dual Specific Inhibitors Of The BCR-ABL and MNK Kinases As Potential Therapeutics For Blast Crisis Chronic Myeloid Leukemia. Blood, 2013, 122, 2702-2702.	1.4	1
47	Discovery of Kinase Spectrum Selective Macrocycle (16 <i>E</i>)-14-Methyl-20-oxa-5,7,14,26-tetraazatetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8 (SB1317/TG02), a Potent Inhibitor of Cyclin Dependent Kinases (CDKs), Janus Kinase 2 (JAK2), and Fms-like Tyrosine Kinase-3 (FLT3) for the Treatment of Cancer. Journal of Medicinal Chemistry, 2012, 55, 169-196.	(27),9,11,	16, 21 ,23-deca
48	Discovery of the Macrocycle (9 <i>E</i>)-15-(2-(Pyrrolidin-1-yl)ethoxy)-7,12,25-trioxa-19,21,24-triaza-tetracyclo[18.3.1.1(2,5).1(14,18)]hexac (SB1578), a Potent Inhibitor of Janus Kinase 2/Fms-LikeTyrosine Kinase-3 (JAK2/FLT3) for the Treatment of Rheumatoid Arthritis. Journal of Medicinal Chemistry, 2012, 55, 2623-2640.	osa-1(24)	,2,4,9,14(26), 41
49	Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3). Journal of Computer-Aided Molecular Design, 2012, 26, 437-450.	2.9	33
50	Structure-based design of PDK1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 305-307.	2.2	11
51	Structure-based optimization of morpholino-triazines as PI3K and mTOR inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1009-1013.	2.2	16
52	2-Anilino-4-aryl-8H-purine derivatives as inhibitors of PDK1. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2880-2884.	2.2	9
53	Thieno[3,2-d]pyrimidin-4(3H)-one derivatives as PDK1 inhibitors discovered by fragment-based screening. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4023-4027.	2.2	8
54	Discovery of the Macrocycle 11-(2-Pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3	,5,8,10,12	2(27),16,21,23

(SB1518), a Potent Janus Kinase 2/Fms-Like Tyrosine Kinase-3 (JAK2/FLT3) Inhibitor for the Treatment of Myelofibrosis and Lymphoma. Journal of Medicinal Chemistry, 2011, 54, 4638-4658.

ANDERS POULSEN

#	Article	IF	CITATIONS
55	Discovery of (2 <i>E</i>)-3-{2-Butyl-1-[2-(diethylamino)ethyl]-1 <i>H</i> -benzimidazol-5-yl}- <i>N</i> -hydroxyacrylamide (SB939), an Orally Active Histone Deacetylase Inhibitor with a Superior Preclinical Profile. Journal of Medicinal Chemistry, 2011, 54, 4694-4720.	6.4	82
56	Synthesis and evaluation of alkenyl indazoles as selective Aurora kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2443-2447.	2.2	14
57	N-Hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides as novel histone deacetylase inhibitors: Design, synthesis, SAR studies, and in vivo antitumor activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1403-1408.	2.2	27
58	Structure-based design of Aurora A & B inhibitors. Journal of Computer-Aided Molecular Design, 2008, 22, 897-906.	2.9	13
59	SIRT1 Modulating Compounds from High-Throughput Screening as Anti-Inflammatory and Insulin-Sensitizing Agents. Journal of Biomolecular Screening, 2006, 11, 959-967.	2.6	137
60	Pharmacophore and receptor models for neurokinin receptors. Journal of Computer-Aided Molecular Design, 2003, 17, 765-783.	2.9	14
61	A pharmacophore model for NK2 antagonist comprising compounds from several structurally diverse classes. Journal of Computer-Aided Molecular Design, 2002, 16, 273-286.	2.9	10
62	Combining the [2,3] sigmatropic rearrangement and ring-closing metathesis strategies for the synthesis of spirocyclic alkaloids. A short and efficient route to (A±)-perhydrohistrionicotoxin. Tetrahedron, 1999, 55, 1427-1440.	1.9	33