Mingjian Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3731906/publications.pdf

Version: 2024-02-01

		38720	20343
116	22,745	50	116
papers	citations	h-index	g-index
110	110	110	22017
119	119	119	22017
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519-522.	6.0	4,156
2	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	6.0	2,019
3	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	6.0	1,948
4	Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11, 872-877.	15.6	1,868
5	Ligand-Stabilized Reduced-Dimensionality Perovskites. Journal of the American Chemical Society, 2016, 138, 2649-2655.	6.6	1,157
6	Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nature Communications, 2015, 6, 7081.	5.8	948
7	Highly Efficient Perovskiteâ€Quantumâ€Dot Lightâ€Emitting Diodes by Surface Engineering. Advanced Materials, 2016, 28, 8718-8725.	11.1	917
8	Planar-integrated single-crystalline perovskite photodetectors. Nature Communications, 2015, 6, 8724.	5.8	617
9	Electron–phonon interaction in efficient perovskite blue emitters. Nature Materials, 2018, 17, 550-556.	13.3	472
10	Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. Nano Letters, 2017, 17, 3701-3709.	4.5	409
11	Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 2008, 10, 1481-1484.	2.4	373
12	Amineâ€Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8757-8763.	7.8	344
13	Reduced-Dimensional \hat{l} ±-CsPbX3 Perovskites for Efficient and Stable Photovoltaics. Joule, 2018, 2, 1356-1368.	11.7	344
14	Spectra stable blue perovskite light-emitting diodes. Nature Communications, 2019, 10, 1868.	5.8	344
15	Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance. Advanced Materials, 2016, 28, 299-304.	11.1	312
16	The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Progress in Polymer Science, 2013, 38, 1978-1989.	11.8	274
17	Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nature Communications, 2021, 12, 1246.	5.8	274
18	A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Organic Letters, 2007, 9, 2313-2316.	2.4	258

#	Article	IF	Citations
19	Colloidal quantum dot solids for solution-processed solar cells. Nature Energy, 2016, 1, .	19.8	255
20	Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Science China Chemistry, 2021, 64, 2060-2104.	4.2	248
21	Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nature Communications, 2021, 12, 336.	5.8	237
22	High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light: Science and Applications, 2021, 10, 61.	7.7	235
23	A Multianalyte Chemosensor on a Single Molecule: Promising Structure for an Integrated Logic Gate. Journal of Organic Chemistry, 2008, 73, 5008-5014.	1.7	210
24	Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nature Communications, 2020, 11, 1672.	5.8	191
25	The Inâ€Gap Electronic State Spectrum of Methylammonium Lead Iodide Singleâ€Crystal Perovskites. Advanced Materials, 2016, 28, 3406-3410.	11.1	187
26	A Chiral Reducedâ€Dimension Perovskite for an Efficient Flexible Circularly Polarized Light Photodetector. Angewandte Chemie - International Edition, 2020, 59, 6442-6450.	7.2	178
27	Aâ€site Cation Engineering for Highly Efficient MAPbl ₃ Singleâ€Crystal Xâ€ray Detector. Angewandte Chemie - International Edition, 2019, 58, 17834-17842.	7.2	174
28	High-performance large-area quasi-2D perovskite light-emitting diodes. Nature Communications, 2021, 12, 2207.	5.8	173
29	Graphdiyne: An Efficient Hole Transporter for Stable Highâ€Performance Colloidal Quantum Dot Solar Cells. Advanced Functional Materials, 2016, 26, 5284-5289.	7.8	172
30	High Color Purity Leadâ€Free Perovskite Lightâ€Emitting Diodes via Sn Stabilization. Advanced Science, 2020, 7, 1903213.	5.6	146
31	Orientation Regulation of Tinâ€Based Reducedâ€Dimensional Perovskites for Highly Efficient and Stable Photovoltaics. Advanced Functional Materials, 2019, 29, 1807696.	7.8	136
32	Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr ₃ /CsPbBr ₃ for LED Applications. Advanced Functional Materials, 2020, 30, 1910582.	7.8	135
33	Scalable Assembly of Flexible Ultrathin Allâ€inâ€One Zincâ€ion Batteries with Highly Stretchable, Editable, and Customizable Functions. Advanced Materials, 2021, 33, e2008140.	11.1	106
34	Graphdiyne-Supported NiFe Layered Double Hydroxide Nanosheets as Functional Electrocatalysts for Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 2662-2669.	4.0	104
35	Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nature Energy, 2021, 6, 977-986.	19.8	103
36	Jointly Tuned Plasmonic–Excitonic Photovoltaics Using Nanoshells. Nano Letters, 2013, 13, 1502-1508.	4.5	93

#	Article	IF	CITATIONS
37	Constructing Cuâ°C Bonds in a Graphdiyneâ€Regulated Cu Singleâ€Atom Electrocatalyst for CO ₂ Reduction to CH ₄ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	92
38	Increasing Polymer Solar Cell Fill Factor by Trapâ€Filling with F4â€TCNQ at Parts Per Thousand Concentration. Advanced Materials, 2016, 28, 6491-6496.	11.1	85
39	The synthesis of high bright silver nanoclusters with aggregation-induced emission for detection of tetracycline. Sensors and Actuators B: Chemical, 2021, 326, 129009.	4.0	77
40	Synergistic Doping of Fullerene Electron Transport Layer and Colloidal Quantum Dot Solids Enhances Solar Cell Performance. Advanced Materials, 2015, 27, 917-921.	11.1	75
41	Controllable Growth of 0D to Multidimensional Nanostructures of a Novel Porphyrin Molecule. Advanced Materials, 2009, 21, 1721-1725.	11.1	72
42	Efficient tuning nonlinear optical properties: Synthesis and characterization of a series of novel poly(aryleneethynylene)s coâ€containing BODIPY. Journal of Polymer Science Part A, 2008, 46, 7401-7410.	2.5	71
43	Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics. Advanced Materials, 2020, 32, e1903937.	11.1	69
44	Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. Nature Communications, 2015, 6, 7772.	5.8	68
45	Controlled growth and field emission properties of CuS nanowalls. Nanotechnology, 2007, 18, 145706.	1.3	65
46	Constructing Regioregular Star Poly(3-hexylthiophene) via Externally Initiated Kumada Catalyst-Transfer Polycondensation. ACS Macro Letters, 2012, 1, 392-395.	2.3	65
47	Influence of fluorine substituents on the film dielectric constant and open-circuit voltage in organic photovoltaics. Journal of Materials Chemistry C, 2014, 2, 3278-3284.	2.7	64
48	Doping Control Via Molecularly Engineered Surface Ligand Coordination. Advanced Materials, 2013, 25, 5586-5592.	11.1	62
49	All-Quantum-Dot Infrared Light-Emitting Diodes. ACS Nano, 2015, 9, 12327-12333.	7.3	61
50	Oligoselenophene Derivatives Functionalized with a Diketopyrrolopyrrole Core for Molecular Bulk Heterojunction Solar Cells. ACS Applied Materials & Samp; Interfaces, 2011, 3, 271-278.	4.0	58
51	Halogen-halogen bonds enable improved long-term operational stability of mixed-halide perovskite photovoltaics. CheM, 2021, 7, 3131-3143.	5.8	55
52	A Chiral Reducedâ€Dimension Perovskite for an Efficient Flexible Circularly Polarized Light Photodetector. Angewandte Chemie, 2020, 132, 6504-6512.	1.6	54
53	Multifunctional Naphthol Sulfonic Salt Incorporated in Lead-Free 2D Tin Halide Perovskite for Red Light-Emitting Diodes. ACS Photonics, 2020, 7, 1915-1922.	3.2	52
54	Energy-Funneling Process in Quasi-2D Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 2593-2606.	2.1	52

#	Article	IF	CITATIONS
55	Synthesis, Characterization, and Self-Assembly of Nitrogen-Containing Heterocoronenetetracarboxylic Acid Diimide Analogues: Photocyclization of N-Heterocycle-Substituted Perylene Bisimides. Chemistry - A European Journal, 2006, 12, 8378-8385.	1.7	49
56	Optic and proton dual-control of the fluorescence of Rhodamine based on photochromic diarylethene: mimicking the performance of an integrated logic gate. Tetrahedron Letters, 2009, 50, 1588-1592.	0.7	47
57	<i>In situ</i> construction of graphdiyne/CuS heterostructures for efficient hydrogen evolution reaction. Materials Chemistry Frontiers, 2019, 3, 821-828.	3.2	47
58	Synthesis and characterization of fused-thiophene containing naphthalene diimide <i>n</i> -type copolymers for organic thin film transistor and all-polymer solar cell applications. Journal of Polymer Science Part A, 2013, 51, 4061-4069.	2.5	45
59	Recent Progress on Formamidiniumâ€Dominated Perovskite Photovoltaics. Advanced Energy Materials, 2022, 12, 2100690.	10.2	45
60	CoS2 nanowires supported graphdiyne for highly efficient hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 60, 272-278.	7.1	44
61	Two-dimensional perovskite capping layer for stable and efficient tin-lead perovskite solar cells. Science China Chemistry, 2019, 62, 629-636.	4.2	43
62	Stabilization of cobalt clusters with graphdiyne enabling efficient overall water splitting. Nano Energy, 2020, 74, 104852.	8.2	43
63	CH3NH3Pbl3:MoS2 heterostructure for stable and efficient inverted perovskite solar cell. Solar Energy, 2020, 195, 436-445.	2.9	42
64	Unusual Fluorescence Enhancement of a Novel Carbazolyldiacetylene Bound to Gold Nanoparticles. Langmuir, 2007, 23, 6754-6760.	1.6	40
65	Highâ€Performance Quantumâ€Dot Solids via Elemental Sulfur Synthesis. Advanced Materials, 2014, 26, 3513-3519.	11.1	39
66	Benzo [2,1â€ <i>b</i> ;3,4â€ <i>b</i> à6€²]dithiopheneâ€based lowâ€bandgap polymers for photovoltaic applicatio Journal of Polymer Science Part A, 2011, 49, 701-711.	ns 2.5	38
67	Organicâ^'Inorganic Nanohybrids via Directly Grafting Gold Nanoparticles onto Conjugated Copolymers through the Dielsâ^'Alder Reaction. Langmuir, 2008, 24, 11967-11974.	1.6	37
68	Low Bandgap Polymers Based on Silafluorene Containing Multifused Heptacylic Arenes for Photovoltaic Applications. Macromolecules, 2012, 45, 5934-5940.	2,2	37
69	Pore size effect of graphyne supports on CO ₂ electrocatalytic activity of Cu single atoms. Physical Chemistry Chemical Physics, 2020, 22, 1181-1186.	1.3	37
70	Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Lightâ€Emitting Diodes. Small, 2018, 14, e1703410.	5.2	35
71	Self-Assembly of Conjugated Polymers and ds-Oligonucleotides Directed Fractal-like Aggregates. Biomacromolecules, 2007, 8, 1723-1729.	2.6	34
72	Facile, rapid one-pot synthesis of multifunctional gold nanoclusters for cell imaging, hydrogen sulfide detection and pH sensing. Talanta, 2019, 197, 1-11.	2.9	33

#	Article	IF	CITATIONS
73	Lithium bis(oxalate)borate additive in the electrolyte to improve Li-rich layered oxide cathode materials. Materials Chemistry Frontiers, 2020, 4, 1689-1696.	3.2	33
74	All-Inorganic Perovskite Solar Cells Based on CsPbIBr2 and Metal Oxide Transport Layers with Improved Stability. Nanomaterials, 2019, 9, 1666.	1.9	30
75	Perovskite Quantum Wells Formation Mechanism for Stable Efficient Perovskite Photovoltaics—A Realâ€Time Phaseâ€Transition Study. Advanced Materials, 2021, 33, e2006238.	11.1	30
76	Direct Observation of Competition between Amplified Spontaneous Emission and Auger Recombination in Quasi-Two-Dimensional Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 5734-5740.	2.1	28
77	Efficient and stable perovskite solar cells based on high-quality CH ₃ NH ₃ Pbl _{3â^3x} Cl _x films modified by V ₂ O _x additives. Journal of Materials Chemistry A, 2017, 5, 24282-24291.	5.2	27
78	Large Third-Order Optical Nonlinear Effects of Gold Nanoparticles with Unusual Fluorescence Enhancement. Langmuir, 2008, 24, 8297-8302.	1.6	25
79	A Review on Improving the Quality of Perovskite Films in Perovskite Solar Cells via the Weak Forces Induced by Additives. Applied Sciences (Switzerland), 2019, 9, 4393.	1.3	24
80	Solution processed double-decked V2Ox/PEDOT:PSS film serves as the hole transport layer of an inverted planar perovskite solar cell with high performance. RSC Advances, 2017, 7, 26202-26210.	1.7	23
81	Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. Applied Physics Letters, 2017, 110, 223903.	1.5	23
82	Construction of diads and triads copolymer systems containing perylene, porphyrin, and/or fullerene blocks. Journal of Polymer Science Part A, 2006, 44, 5863-5874.	2.5	22
83	Chemical reduction-induced surface oxygen vacancies of BiVO ₄ photoanodes with enhanced photoelectrochemical performance. Sustainable Energy and Fuels, 2021, 5, 2284-2293.	2.5	21
84	Controlled Aggregation of Functionalized Gold Nanoparticles with a Novel Conjugated Oligomer. ChemPhysChem, 2007, 8, 906-912.	1.0	20
85	Tuning Surface Wettability of Buffer Layers by Incorporating Polyethylene Glycols for Enhanced Performance of Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26670-26679.	4.0	20
86	Brightly full-color emissions of oligo(p-phenylenevinylene)s: substituent effects on photophysical properties. Tetrahedron, 2007, 63, 3168-3172.	1.0	19
87	TiO2 nanowire electron transport pathways inside organic photovoltaics. Physical Chemistry Chemical Physics, 2013, 15, 4566.	1.3	19
88	Improvement in the performance of inverted planar perovskite solar cells via the CH3NH3PbI3-xClx:ZnO bulk heterojunction. Journal of Power Sources, 2018, 401, 303-311.	4.0	19
89	Suppressing photoinduced charge recombination at the BiVO4 NiOOH junction by sandwiching an oxygen vacancy layer for efficient photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2022, 608, 1116-1125.	5.0	19
90	Lanthanide doped lead-free double perovskites as the promising next generation ultra-broadband light sources. Light: Science and Applications, 2022, 11, 99.	7.7	19

#	Article	IF	CITATIONS
91	Hard and soft Lewis-base behavior for efficient and stable CsPbBr ₃ perovskite light-emitting diodes. Nanophotonics, 2021, 10, 2157-2166.	2.9	16
92	Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device Optimization. Advanced Energy Materials, 2022, 12, .	10.2	16
93	Chemical sensors based on π-conjugated organic molecules and gold nanoparticles. Science in China Series B: Chemistry, 2009, 52, 715-730.	0.8	15
94	Aâ€site Cation Engineering for Highly Efficient MAPbl ₃ Singleâ€Crystal Xâ€ray Detector. Angewandte Chemie, 2019, 131, 17998-18006.	1.6	15
95	Low-dimensionality perovskites yield high electroluminescence. Science Bulletin, 2020, 65, 1057-1060.	4.3	15
96	Metal halide perovskites for blue light emitting materials. APL Materials, 2020, 8, .	2.2	15
97	Metal Halide Perovskites for Redâ€Emission Lightâ€Emitting Diodes. Small Structures, 2022, 3, .	6.9	15
98	Spontaneously Aggregated Chiral Nanostructures from Achiral Tripodâ^'Terpyridine. Journal of Physical Chemistry B, 2007, 111, 8063-8068.	1.2	14
99	Development of sensing method for mercury ions and cell imaging based on highly fluorescent gold nanoclusters. Microchemical Journal, 2019, 146, 1140-1149.	2.3	14
100	Conjugated Alkylamine by Twoâ€Step Surface Ligand Engineering in CsPbBr 3 Perovskite Nanocrystals for Efficient Lightâ€Emitting Diodes. ChemNanoMat, 2019, 5, 318-322.	1.5	14
101	Recent progress on post-synthetic treatments of photoelectrodes for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 26628-26649.	5.2	14
102	An efficient and stable inverted perovskite solar cell involving inorganic charge transport layers without a high temperature procedure. RSC Advances, 2020, 10, 18608-18613.	1.7	13
103	Tunable Photocatalytic Two-Electron Shuttle between Paired Redox Sites on Halide Perovskite Nanocrystals. ACS Catalysis, 2022, 12, 5903-5910.	5.5	13
104	Bandgap Funneling in Bismuthâ€Based Hybrid Perovskite Photocatalyst with Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Small Methods, 2022, 6, .	4.6	12
105	Stabilization of Cu/Ni Alloy Nanoparticles with Graphdiyne Enabling Efficient CO2 Reduction. Chemical Research in Chinese Universities, 2021, 37, 1328-1333.	1.3	11
106	Cleavable Ligands Enable Uniform Close Packing in Colloidal Quantum Dot Solids. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21995-22000.	4.0	9
107	Recent advances of graphdiyne: synthesis, functionalization, and electrocatalytic applications. Materials Chemistry Frontiers, 2021, 5, 7964-7981.	3.2	9
108	Li-Doped Chemical Bath Deposited SnO ₂ Enables Efficient Perovskite Photovoltaics. ACS Applied Energy Materials, 2022, 5, 5340-5347.	2.5	9

#	Article	IF	CITATIONS
109	Constructing Cuâ^'C Bonds in a Graphdiyneâ€Regulated Cu Singleâ€Atom Electrocatalyst for CO ₂ Reduction to CH ₄ . Angewandte Chemie, 2022, 134, .	1.6	8
110	Cu substitution boosts self-trapped exciton emission in zinc-based metal halides for sky-blue light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 9530-9537.	2.7	8
111	Graphdiyneâ€Stabilized Silver Nanoparticles as an Efficient Electrocatalyst for CO 2 Reduction. Advanced Energy and Sustainability Research, 2021, 2, 2100037.	2.8	7
112	Slowing Down for Growth Mechanism and Speeding Up for Performance Optimization Based on Single Ligand Passivated CsPbBr ₃ Nanoplatelets. Advanced Optical Materials, 2022, 10, .	3.6	7
113	Multiexciton state of singlet fission in triisopropylsilylethynylâ€pentacene. Microwave and Optical Technology Letters, 2021, 63, 1399-1405.	0.9	1
114	Employ ionic liquid to stabilize black-phase formamidinium perovskites. Science China Chemistry, 2021, 64, 1263-1264.	4.2	1
115	Methylammonium- and bromide-free perovskites enable efficient and stable photovoltaics. Journal of Energy Chemistry, 2021, 63, 12-24.	7.1	1
116	23.5: Invited Paper: Quasiâ€2D perovskites for efficient lightâ€emitting diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 305-305.	0.1	0