Hua Huo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3731856/publications.pdf Version: 2024-02-01

Ημλ Ημο

#	Article	IF	CITATIONS
1	Insight into the Electrochemical Behaviors of <scp>NCM811</scp> <scp>SiOâ€Gr</scp> Pouch Battery through Thickness Variation. Energy and Environmental Materials, 2023, 6, .	7.3	4
2	The origins of kinetics hysteresis and irreversibility of monoclinic Li3V2(PO4)3. Journal of Energy Chemistry, 2022, 67, 593-603.	7.1	4
3	Tuning the phase evolution pathway of LiNi0.5Mn1.5O4 synthesis from binary intermediates to ternary intermediates with thermal regulating agent. Journal of Energy Chemistry, 2022, 65, 62-70.	7.1	4
4	<i>ï€</i> onjugation Induced Anchoring of Ferrocene on Graphdiyne Enable Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Advanced Science, 2022, 9, e2103964.	5.6	9
5	Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries. Chemical Engineering Journal, 2022, 431, 133982.	6.6	38
6	Investigating the Origin of the Enhanced Sodium Storage Capacity of Transition Metal Sulfide Anodes in Etherâ€Based Electrolytes. Advanced Functional Materials, 2022, 32, .	7.8	24
7	Construction of polysulfides defense system for greatly improving the long cycle life of metal sulfide anodes for sodium-ion batteries. Journal of Energy Chemistry, 2022, 71, 210-217.	7.1	13
8	Developing a Double Protection Strategy for High-Performance Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathodes. ACS Applied Energy Materials, 2022, 5, 6401-6409.	2.5	6
9	Hierarchical NiMn/NiMn-LDH/ppy-C induced by a novel phase-transformation activation process for long-life supercapacitor. Journal of Colloid and Interface Science, 2022, 622, 1020-1028.	5.0	9
10	Achieving high-energy-density magnesium/sulfur battery via a passivation-free Mg-Li alloy anode. Energy Storage Materials, 2022, 50, 380-386.	9.5	14
11	DNA Helix Structure Inspired Flexible Lithium-Ion Batteries with High Spiral Deformability and Long-Lived Cyclic Stability. Nano Letters, 2022, 22, 5553-5560.	4.5	8
12	Surface-Phase Engineering via Lanthanum Doping Enables Enhanced Electrochemical Performance of Li-Rich Layered Cathode. ACS Applied Energy Materials, 2022, 5, 9648-9656.	2.5	8
13	A bifunctional perovskite oxide catalyst: The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping. Journal of Energy Chemistry, 2021, 54, 217-224.	7.1	49
14	Dendrites in Solidâ€State Batteries: Ion Transport Behavior, Advanced Characterization, and Interface Regulation. Advanced Energy Materials, 2021, 11, 2003250.	10.2	69
15	Engineering Molecular Polymerization for Templateâ€Free SiO <i>_x</i> /C Hollow Spheres as Ultrastable Anodes in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2101145.	7.8	74
16	A Review of Magnesium Aluminum Chloride Complex Electrolytes for Mg Batteries. Advanced Functional Materials, 2021, 31, 2100650.	7.8	39
17	Formation of an Artificial Mg ²⁺ -Permeable Interphase on Mg Anodes Compatible with Ether and Carbonate Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 24565-24574.	4.0	36
18	Unraveling the reaction mechanism of low dose Mn dopant in Ni(OH)2 supercapacitor electrode. Journal of Energy Chemistry, 2021, 61, 497-506.	7.1	41

Hua Huo

#	Article	IF	CITATIONS
19	Monovacancy Coupled Pyridinic N Site Enables Surging Oxygen Reduction Activity of Metal-Free CNx Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 1264-1271.	3.2	8
20	Nuclear magnetic resonance studies of organic-inorganic composite solid electrolytes. Magnetic Resonance Letters, 2021, 1, 142-152.	0.7	3
21	Unraveling the Relationship between Ti ⁴⁺ Doping and Li ⁺ Mobility Enhancement in Ti ⁴⁺ Doped Li ₃ V ₂ (PO ₄) ₃ . ACS Applied Energy Materials, 2020, 3, 715-722.	2.5	11
22	Facile carbon fiber-sewed high areal density electrode for lithium sulfur batteries. Chemical Communications, 2020, 56, 10758-10761.	2.2	9
23	Cobalt-Doped NiS ₂ Micro/Nanostructures with Complete Solid Solubility as High-Performance Cathode Materials for Actual High-Specific-Energy Thermal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 50377-50387.	4.0	39
24	Bifunctional LaMn _{0.3} Co _{0.7} O ₃ Perovskite Oxide Catalyst for Oxygen Reduction and Evolution Reactions: The Optimized e _g Electronic Structures by Manganese Dopant. ACS Applied Materials & Interfaces, 2020, 12, 24717-24725.	4.0	85
25	Perovskite LaCo _{<i>x</i>} Mn _{1–<i>x</i>} O _{3â^'Ïf} with Tunable Defect and Surface Structures as Cathode Catalysts for Li–O ₂ Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 10452-10460.	4.0	23
26	A porous N-doped carbon aggregate as sulfur host for lithium-sulfur batteries. Ionics, 2019, 25, 2131-2138.	1.2	8
27	Unraveling the Origins of the "Unreactive Core―in Conversion Electrodes to Trigger High Sodium-Ion Electrochemistry. ACS Energy Letters, 2019, 4, 2007-2012.	8.8	33
28	Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Nano Energy, 2019, 66, 104179.	8.2	45
29	170 Solid-State NMR Studies of ZrO2 Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 4158-4167.	1.5	17
30	Ni-MOF derived NiO/C nanospheres grown in situ on reduced graphene oxide towards high performance hybrid supercapacitor. Journal of Alloys and Compounds, 2019, 801, 158-165.	2.8	64
31	Lithiumâ€Ion Batteries: Radially Oriented Singleâ€Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material for Lithiumâ€Ion Batteries (Adv. Energy Mater. 15/2019). Advanced Energy Materials, 2019, 9, 1970051	10.2	14
32	Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy, 2019, 61, 201-210.	8.2	121
33	Investigating the Structure of an Active Material–Carbon Interface in the Monoclinic Li ₃ V ₂ (PO ₄) ₃ /C Composite Cathode. ACS Applied Energy Materials, 2019, 2, 3692-3702.	2.5	9
34	Progressive concentration gradient nickel-rich oxide cathode material for high-energy and long-life lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 7728-7735.	5.2	61
35	A quasi-solid-state Li–S battery with high energy density, superior stability and safety. Journal of Materials Chemistry A, 2019, 7, 6533-6542.	5.2	42
36	Radially Oriented Singleâ€Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Material for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803963.	10.2	240

Hua Huo

#	Article	IF	CITATIONS
37	Understanding the Structural Evolution and Lattice Water Movement for Rhombohedral Nickel Hexacyanoferrate upon Sodium Migration. ACS Applied Materials & Interfaces, 2019, 11, 46705-46713.	4.0	31
38	Unravelling the Enhanced Highâ€Temperature Performance of Lithiumâ€Rich Oxide Cathode with Methyl Diphenylphosphinite as Electrolyte Additive. ChemElectroChem, 2018, 5, 1569-1575.	1.7	29
39	Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Materials, 2018, 11, 197-204.	9.5	117
40	Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Materials, 2018, 11, 57-66.	9.5	163
41	Bifunctional electrolyte additive KI to improve the cycling performance of Li–O ₂ batteries. New Journal of Chemistry, 2018, 42, 17311-17316.	1.4	2
42	Probing local structure of paramagnetic Ni-Al layered double hydroxides with solid-state 2H NMR spectroscopy. Chemical Physics Letters, 2018, 706, 47-52.	1.2	9
43	Magnesium/chloride co-doping of lithium vanadium phosphate cathodes for enhanced stable lifetime in lithium-ion batteries. New Journal of Chemistry, 2018, 42, 13667-13673.	1.4	7
44	Roles of coating carbon, conductive additive and binders in lithium vanadium phosphate/reduced graphene oxide composite cathodes. New Journal of Chemistry, 2017, 41, 14228-14235.	1.4	6
45	Clew-like N-doped multiwalled carbon nanotube aggregates derived from metal-organic complexes for lithium-sulfur batteries. Carbon, 2017, 122, 635-642.	5.4	39
46	Cycling stability of Li3V2 (PO4)3/C cathode in a broad electrochemical window. Journal of Electroanalytical Chemistry, 2016, 774, 76-82.	1.9	9
47	Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na ₃ V ₂ (PO ₄) ₂ F ₃ . Chemistry of Materials, 2014, 26, 2513-2521.	3.2	156
48	170 Magic Angle Spinning NMR Studies of Brà nsted Acid Sites in Zeolites HY and HZSM-5. Journal of the American Chemical Society, 2007, 129, 335-346.	6.6	90