Huan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3731793/publications.pdf

Version: 2024-02-01

331670 302126 1,641 60 21 39 citations h-index g-index papers 60 60 60 2131 times ranked citing authors docs citations all docs

#	Article	IF	CITATIONS
1	Application of mesoporous calcium silicate nanoparticles as a potential SD carrier to improve the solubility of curcumin. Journal of Dispersion Science and Technology, 2023, 44, 2258-2266.	2.4	6
2	Biodegradable Mg-based alloys: biological implications and restorative opportunities. International Materials Reviews, 2023, 68, 365-403.	19.3	16
3	Fabrication of GO-TiO2/(Ca,Y)F2:Tm,Yb composites with high-efficiency optical driving photocatalytic activity for degradation of organic dyes and bacteriostasis. Rare Metals, 2022, 41, 650-662.	7.1	18
4	Macroporous and Antibacterial Hydrogels Enabled by Incorporation of Mg-Cu Alloy Particles for Accelerating Skin Wound Healing. Acta Metallurgica Sinica (English Letters), 2022, 35, 853-866.	2.9	7
5	Improve endothelialization of metallic cardiovascular stent via femtosecond laser induced micro/nanostructure dependent cells proliferation and drug delivery control. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112376.	5.0	8
6	A multi-functional SiO ₃ ^{2â^'} -releasing hydrogel with bioinspired mechanical properties and biodegradability for vascularized skeletal muscle regeneration. Journal of Materials Chemistry B, 2022, 10, 7540-7555.	5.8	6
7	A review of the effects and molecular mechanisms of dimethylcurcumin (ASCâ€J9) on androgen receptorâ€related diseases. Chemical Biology and Drug Design, 2021, 97, 821-835.	3.2	14
8	Monetite, an important calcium phosphate compound–Its synthesis, properties and applications in orthopedics. Acta Biomaterialia, 2021, 127, 41-55.	8.3	43
9	Development of hydrofluoric acid-cleaned silicon nitride implants for periprosthetic infection eradication and bone regeneration enhancement. Materials Science and Engineering C, 2021, 127, 112241.	7.3	10
10	Femtosecond laser-induced nanoporous layer for enhanced osteogenesis of titanium implants. Materials Science and Engineering C, 2021, 127, 112247.	7.3	12
11	Preparation of (CaY)F ₂ :Tm ³⁺ ,Yb ³⁺ deposited porous TiO ₂ matrix with highly nearâ€infrared light photocatalytic activity. Micro and Nano Letters, 2021, 16, 83-89.	1.3	1
12	Effects of polydopamine coatings on nucleation modes of surface mineralization from simulated body fluid. Scientific Reports, 2020, 10, 14982.	3.3	22
13	SynthesisÂand Herbicidal Activity of Trifluoromethylâ€Substituted Phenyl Alkyl Ketoxime Esters of Bispyribac. ChemistrySelect, 2020, 5, 4194-4199.	1.5	1
14	iRGDâ€paclitaxel conjugate nanoparticles for targeted paclitaxel delivery. Drug Development Research, 2019, 80, 1080-1088.	2.9	19
15	Injectable biomaterials for translational medicine. Materials Today, 2019, 28, 81-97.	14.2	82
16	Translation of bone wax and its substitutes: History, clinical status and future directions. Journal of Orthopaedic Translation, 2019, 17, 64-72.	3.9	22
17	The translatory aspects of calcium phosphates for orthopedic applications., 2019,, 37-55.		3
18	Co-precipitation of calcium carbonate and curcumin in an ethanol medium as a novel approach for curcumin dissolution enhancement. Journal of Drug Delivery Science and Technology, 2019, 51, 397-402.	3.0	12

#	Article	IF	CITATIONS
19	Methoxylpoly(ethylene glycol)â€retinoic acid Micelles Loaded with Dimethylcurcumin for Efficient Castrationâ€Resistant Prostate Cancer Therapy. ChemistrySelect, 2019, 4, 12015-12021.	1.5	8
20	Application of \hat{l}^2 $\hat{a} \in \mathbb{C}D/HA$ composite as a potential SD carrier to improve the dissolution of curcumin. Micro and Nano Letters, 2019, 14, 353-358.	1.3	0
21	Synthesis of mesoporous hydroxyapatite via a vitamin C templating hydrothermal route. Materials Letters, 2018, 218, 52-55.	2.6	25
22	Synthesis of mesoporous magnesium phosphates as dispersing carriers for cryptotanshinone solid dispersions. International Journal of Applied Ceramic Technology, 2018, 15, 938-946.	2.1	1
23	Magnesium-based bioceramics in orthopedic applications. Acta Biomaterialia, 2018, 66, 23-43.	8.3	239
24	Using calcium sulfate cement—Hydroxypropyl methyl cellulose/sodium alginate composites as substitutes of bone wax. International Journal of Applied Ceramic Technology, 2018, 15, 903-909.	2.1	9
25	Nanotechnology-enabled materials for hemostatic and anti-infection treatments in orthopedic surgery. International Journal of Nanomedicine, 2018, Volume 13, 8325-8338.	6.7	29
26	Biomimetic coating technology for orthopedic implants. Current Opinion in Chemical Engineering, 2017, 15, 49-55.	7.8	64
27	Mesoporous hydroxyapatite nanoparticles hydrothermally synthesized in aqueous solution with hexametaphosphate and tea polyphenols. Materials Science and Engineering C, 2017, 71, 439-445.	7.3	30
28	Deposition of calcium phosphate coatings using condensed phosphates (P 2 O 7 4â^' and P 3 O 10 5â^') as phosphate source through induction heating. Materials Science and Engineering C, 2016, 69, 337-342.	7.3	5
29	Synthesis of \hat{I}^2 -TCP and CPP containing biphasic calcium phosphates by a robust technique. Ceramics International, 2016, 42, 11032-11038.	4.8	15
30	Preparation of Chinese mystery snail shells derived hydroxyapatite with different morphology using condensed phosphate sources. Ceramics International, 2016, 42, 16671-16676.	4.8	23
31	Microwave hydrothermal synthesis of calcium phosphates using inorganic condensed phosphate salts as precursors. Materials Letters, 2016, 180, 239-242.	2.6	5
32	Development of a silica sol reinforced monetite cement matrix. Materials Technology, 2015, 30, B237-B241.	3.0	2
33	Influence of ethanol content in the precipitation medium on the composition, structure and reactivity of magnesium–calcium phosphate. Materials Science and Engineering C, 2015, 53, 204-211.	7.3	20
34	Preparation of Yttrium Phosphate and Yttriumâ€Doped Calcium Phosphate Microspheres via Hydrated Ions Exchange. International Journal of Applied Ceramic Technology, 2015, 12, E146.	2.1	4
35	Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy. Materials Science and Engineering C, 2015, 49, 364-372.	7.3	75
36	Development of nanosilica bonded monetite cement from egg shells. Materials Science and Engineering C, 2015, 50, 45-51.	7.3	26

#	Article	IF	Citations
37	Microwave-assisted fabrication of strontium doped apatite coating on Ti6Al4V. Materials Science and Engineering C, 2015, 56, 174-180.	7.3	22
38	Microwave-assisted rapid preparation of Ca10Na(PO4)7 using sodium triphosphate as a phosphorus source. Ceramics International, 2015, 41, 15111-15115.	4.8	4
39	Microwaveâ€Assisted Production of Amorphous Calcium Magnesium Phosphate: Study From Coâ€Precipitation to Sintered Products. International Journal of Applied Ceramic Technology, 2015, 12, E7.	2.1	0
40	A fast route to modify biopolymer surface: A study on polyetheretherketone (PEEK). Materials Letters, 2014, 125, 96-98.	2.6	41
41	Microwave assisted solution combustion synthesis of strontium phosphate (SrP) whiskers. Materials Letters, 2014, 116, 286-288.	2.6	6
42	Development of monetite/phosphorylated chitosan composite bone cement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 260-266.	3.4	23
43	Formation of nanostructured fluorapatite via microwave assisted solution combustion synthesis. Materials Science and Engineering C, 2014, 37, 363-368.	7.3	22
44	Development of monetite–nanosilica bone cement: A preliminary study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1620-1626.	3.4	19
45	Sustained release of small molecules from carbon nanotube-reinforced monetite calcium phosphate cement. Materials Science and Engineering C, 2014, 43, 92-96.	7.3	14
46	Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Materials Science and Engineering C, 2013, 33, 1710-1719.	7.3	20
47	Microwave assisted apatite coating deposition on Ti6Al4V implants. Materials Science and Engineering C, 2013, 33, 4435-4443.	7.3	34
48	Microwave assisted preparation of magnesium phosphate cement (MPC) for orthopedic applications: A novel solution to the exothermicity problem. Materials Science and Engineering C, 2013, 33, 4288-4294.	7.3	60
49	Development of multi-walled carbon nanotubes reinforced monetite bionanocomposite cements for orthopedic applications. Materials Science and Engineering C, 2013, 33, 4323-4330.	7.3	27
50	Deposition of PLA/CDHA composite coating via electrospraying. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 784-796.	3.5	8
51	Microwave assisted solution combustion synthesis (MASCS) of europium (Eu) doped chlorapatite nanowhiskers. Materials Letters, 2013, 108, 54-57.	2.6	7
52	The impacts of Mg2+ on strontium phosphate: A preliminary study. Materials Letters, 2013, 113, 63-66.	2.6	6
53	Fabrication of novel poly(lactic acid)/amorphous magnesium phosphate bionanocomposite fibers for tissue engineering applications via electrospinning. Materials Science and Engineering C, 2013, 33, 2302-2310.	7.3	39
54	Microwave assisted synthesis of amorphous magnesium phosphate nanospheres. Journal of Materials Science: Materials in Medicine, 2012, 23, 2831-2837.	3.6	42

#	ARTICLE	IF	CITATION
55	Novel microwave synthesis of amorphous calcium phosphate nanospheres. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1142-1150.	3.4	45
56	Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review. Acta Biomaterialia, 2012, 8, 1999-2016.	8.3	223
57	Biomimetic coating of bisphosphonate incorporated CDHA on Ti6Al4V. Journal of Materials Science: Materials in Medicine, 2012, 23, 365-374.	3.6	25
58	Hydrolysis of monetite/chitosan composites in \hat{l}_{\pm} -MEM and SBF solutions. Journal of Materials Science: Materials in Medicine, 2011, 22, 1101-1109.	3.6	17
59	Fabrication of novel PLA/CDHA bionanocomposite fibers for tissue engineering applications via electrospinning. Journal of Materials Science: Materials in Medicine, 2011, 22, 1183-1193.	3.6	54
60	Development of a silica sol-reinforced monetite cement matrix. Materials Technology, 0, , 1-6.	3.0	1