

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3730601/publications.pdf Version: 2024-02-01

KE XII

#	Article	IF	CITATIONS
1	A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature, 2007, 445, 414-417.	13.7	1,176
2	Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons. Science, 2013, 339, 452-456.	6.0	1,066
3	Graphene Visualizes the First Water Adlayers on Mica at Ambient Conditions. Science, 2010, 329, 1188-1191.	6.0	428
4	Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nature Methods, 2012, 9, 185-188.	9.0	423
5	Mitochondrial stress is relayed to the cytosol by an OMA1–DELE1–HRI pathway. Nature, 2020, 579, 427-432.	13.7	343
6	Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. ELife, 2015, 4, .	2.8	288
7	Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers. Nano Letters, 2009, 9, 4446-4451.	4.5	224
8	Ground-State Equilibrium Thermodynamics and Switching Kinetics of Bistable [2]Rotaxanes Switched in Solution, Polymer Gels, and Molecular Electronic Devices. Chemistry - A European Journal, 2006, 12, 261-279.	1.7	216
9	Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy. Nature Methods, 2015, 12, 935-938.	9.0	208
10	Size-Dependent Transport and Thermoelectric Properties of Individual Polycrystalline Bismuth Nanowires. Advanced Materials, 2006, 18, 864-869.	11.1	183
11	Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nature Neuroscience, 2021, 24, 1020-1034.	7.1	170
12	Spectrally Resolved, Functional Super-Resolution Microscopy Reveals Nanoscale Compositional Heterogeneity in Live-Cell Membranes. Journal of the American Chemical Society, 2017, 139, 10944-10947.	6.6	144
13	Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities. Chemical Reviews, 2017, 117, 7428-7456.	23.0	141
14	The Microscopic Structure of Adsorbed Water on Hydrophobic Surfaces under Ambient Conditions. Nano Letters, 2011, 11, 5581-5586.	4.5	138
15	Remodeling of <scp>ER</scp> â€exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Reports, 2017, 18, 1586-1603.	2.0	134
16	Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells. Nature Communications, 2015, 6, 7384.	5.8	119
17	Switchable Solvatochromic Probes for Liveâ€Cell Superâ€resolution Imaging of Plasma Membrane Organization. Angewandte Chemie - International Edition, 2019, 58, 14920-14924.	7.2	110
18	Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis. Neuron, 2019, 104, 458-470.e5.	3.8	98

KE XU

#	Article	IF	CITATIONS
19	Metabolic Reprogramming in Astrocytes Distinguishes Region-Specific Neuronal Susceptibility in Huntington Mice. Cell Metabolism, 2019, 29, 1258-1273.e11.	7.2	97
20	Super-Resolution Microscopy Reveals the Native Ultrastructure of the Erythrocyte Cytoskeleton. Cell Reports, 2018, 22, 1151-1158.	2.9	94
21	COPII-coated membranes function as transport carriers of intracellular procollagen I. Journal of Cell Biology, 2017, 216, 1745-1759.	2.3	93
22	Rbfox Splicing Factors Promote Neuronal Maturation and Axon Initial Segment Assembly. Neuron, 2018, 97, 853-868.e6.	3.8	90
23	Effect of Cell Sex on Uptake of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS Nano, 2018, 12, 2253-2266.	7.3	87
24	Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity. Nature Methods, 2020, 17, 524-530.	9.0	82
25	NuMA recruits dynein activity to microtubule minus-ends at mitosis. ELife, 2017, 6, .	2.8	80
26	Oblique-plane single-molecule localization microscopy for tissues and small intact animals. Nature Methods, 2019, 16, 853-857.	9.0	77
27	Vertebrate cells differentially interpret ciliary and extraciliary cAMP. Cell, 2021, 184, 2911-2926.e18.	13.5	73
28	Superresolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact <i>Caenorhabditis elegans</i> tissue. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4734-E4743.	3.3	72
29	The crossover from two dimensions to one dimension in granular electronic materials. Nature Nanotechnology, 2009, 4, 368-372.	15.6	64
30	Deep nuclear invaginations linked to cytoskeletal filaments: Integrated bioimaging of epithelial cells in 3D culture. Journal of Cell Science, 2017, 130, 177-189.	1.2	64
31	Long, Highly-Ordered High-Temperature Superconductor Nanowire Arrays. Nano Letters, 2008, 8, 3845-3849.	4.5	62
32	Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy. Accounts of Chemical Research, 2018, 51, 697-705.	7.6	60
33	A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. Proceedings of the United States of America, 2020, 117, 11432-11443.	3.3	56
34	Spectrally Resolved Super-Resolution Microscopy Unveils Multipath Reaction Pathways of Single Spiropyran Molecules. Journal of the American Chemical Society, 2017, 139, 9447-9450.	6.6	53
35	TANGO1 and SEC12 are copackaged with procollagen I to facilitate the generation of large COPII carriers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12255-E12264.	3.3	51
36	Asymmetrically Positioned Flagellar Control Units Regulate Human Sperm Rotation. Cell Reports, 2018, 24, 2606-2613.	2.9	47

Ke Xu

#	Article	IF	CITATIONS
37	A nanosized YO-based catalytic chemiluminescent sensor for trimethylamine. Talanta, 2005, 65, 913-917.	2.9	46
38	Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction. Molecular and Cellular Neurosciences, 2014, 61, 241-254.	1.0	45
39	A Weak Link with Actin Organizes Tight Junctions to Control Epithelial Permeability. Developmental Cell, 2020, 54, 792-804.e7.	3.1	44
40	An energy-transfer cataluminescence reaction on nanosized catalysts and its application to chemical sensors. Analytica Chimica Acta, 2005, 535, 145-152.	2.6	42
41	Contact with what?. Nature Materials, 2013, 12, 872-873.	13.3	40
42	Atomic Force Microscopy Characterization of Room-Temperature Adlayers of Small Organic Molecules through Graphene Templating. Journal of the American Chemical Society, 2011, 133, 2334-2337.	6.6	38
43	Visualizing Local Doping Effects of Individual Water Clusters on Gold(111)-Supported Graphene. Nano Letters, 2012, 12, 1459-1463.	4.5	38
44	Probing Nanoscale Diffusional Heterogeneities in Cellular Membranes through Multidimensional Single-Molecule and Super-Resolution Microscopy. Journal of the American Chemical Society, 2020, 142, 18866-18873.	6.6	35
45	Excitation spectral microscopy for highly multiplexed fluorescence imaging and quantitative biosensing. Light: Science and Applications, 2021, 10, 97.	7.7	35
46	Direct Optical Visualization of Graphene and Its Nanoscale Defects on Transparent Substrates. Nano Letters, 2016, 16, 5027-5031.	4.5	34
47	The Spectrin-Actin-Based Periodic Cytoskeleton as a Conserved Nanoscale Scaffold and Ruler of the Neural Stem Cell Lineage. Cell Reports, 2018, 24, 1512-1522.	2.9	34
48	Development of a Virtual Cell Model to Predict Cell Response to Substrate Topography. ACS Nano, 2017, 11, 9084-9092.	7.3	33
49	Azidation of Silicon(111) Surfaces. Journal of the American Chemical Society, 2008, 130, 14910-14911.	6.6	32
50	Controlled Fabrication and Electrical Properties of Long Quasi-One-Dimensional Superconducting Nanowire Arrays. Nano Letters, 2008, 8, 136-141.	4.5	31
51	Switchable Solvatochromic Probes for Live ell Superâ€resolution Imaging of Plasma Membrane Organization. Angewandte Chemie, 2019, 131, 15062-15066.	1.6	31
52	Direct comparison of clathrin-mediated endocytosis in budding and fission yeast reveals conserved and evolvable features. ELife, 2019, 8, .	2.8	31
53	A new type of ERGICâ \in ERES membrane contact mediated by TMED9 and SEC12 is required for autophagosome biogenesis. Cell Research, 2022, 32, 119-138.	5.7	31
54	Information-rich localization microscopy through machine learning. Nature Communications, 2019, 10, 1996.	5.8	28

Ke Xu

#	Article	IF	CITATIONS
55	Super-Resolution Imaging of Clickable Graphene Nanoribbons Decorated with Fluorescent Dyes. Journal of the American Chemical Society, 2018, 140, 9574-9580.	6.6	26
56	Achieving the Theoretical Depairing Current Limit in Superconducting Nanomesh Films. Nano Letters, 2010, 10, 4206-4210.	4.5	24
57	Optical Microscopy Unveils Rapid, Reversible Electrochemical Oxidation and Reduction of Graphene. Nano Letters, 2019, 19, 983-989.	4.5	24
58	Preventing Thin Film Dewetting via Graphene Capping. Advanced Materials, 2017, 29, 1701536.	11.1	23
59	Single Molecules Are Your Quanta: A Bottom-Up Approach toward Multidimensional Super-resolution Microscopy. ACS Nano, 2021, 15, 12483-12496.	7.3	23
60	Determinants of synapse diversity revealed by super-resolution quantal transmission and active zone imaging. Nature Communications, 2022, 13, 229.	5.8	22
61	Graphene in ohmic contact for both <i>n</i> -GaN and <i>p</i> -GaN. Applied Physics Letters, 2014, 104, .	1.5	21
62	Hypotonic Stress Induces Fast, Reversible Degradation of the Vimentin Cytoskeleton via Intracellular Calcium Release. Advanced Science, 2019, 6, 1900865.	5.6	19
63	Cytoskeletal organization in microtentacles. Experimental Cell Research, 2017, 357, 291-298.	1.2	17
64	Azidated Graphene: Direct Azidation from Monolayers, Click Chemistry, and Bulk Production from Graphite. Nano Letters, 2020, 20, 534-539.	4.5	17
65	SURF4-induced tubular ERGIC selectively expedites ER-to-Golgi transport. Developmental Cell, 2022, 57, 512-525.e8.	3.1	17
66	Functional super-resolution microscopy of the cell. Current Opinion in Chemical Biology, 2019, 51, 92-97.	2.8	14
67	Facile, Electrochemical Chlorination of Graphene from an Aqueous NaCl Solution. Nano Letters, 2021, 21, 1150-1155.	4.5	14
68	Spatially Resolved <i>in Situ</i> Reaction Dynamics of Graphene via Optical Microscopy. Journal of the American Chemical Society, 2017, 139, 5836-5841.	6.6	13
69	Optical characterization of surface adlayers and their compositional demixing at the nanoscale. Nature Communications, 2018, 9, 1435.	5.8	13
70	Graphene-Enabled, Spatially Controlled Electroporation of Adherent Cells for Live-Cell Super-resolution Microscopy. ACS Nano, 2020, 14, 5609-5617.	7.3	13
71	Displacement Statistics of Unhindered Single Molecules Show no Enhanced Diffusion in Enzymatic Reactions. Journal of the American Chemical Society, 2022, 144, 4839-4844.	6.6	13
72	Light-Assisted Diazonium Functionalization of Graphene and Spatial Heterogeneities in Reactivity. Journal of Physical Chemistry Letters, 2019, 10, 4788-4793.	2.1	12

KE XU

#	Article	IF	CITATIONS
73	Deterministic Assembly of Arrays of Lithographically Defined WS2 and MoS2 Monolayer Features Directly From Multilayer Sources Into Van Der Waals Heterostructures. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.8	12
74	Transforming Rhodamine Dyes for (d)STORM Superâ€Resolution Microscopy via 1,3â€Ðisubstituted Imidazolium Substitution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
75	Load adaptation by endocytic actin networks. Molecular Biology of the Cell, 2022, 33, mbcE21110589.	0.9	12
76	Branched actin networks are organized for asymmetric force production during clathrin-mediated endocytosis in mammalian cells. Nature Communications, 2022, 13, .	5.8	12
77	The endoplasmic reticulum adopts two distinct tubule forms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117559119.	3.3	11
78	Transforming Rhodamine Dyes for (d)STORM Superâ€Resolution Microscopy via 1,3â€Disubstituted Imidazolium Substitution. Angewandte Chemie, 2022, 134, .	1.6	9
79	Super-Resolution Imaging Through Stochastic Switching and Localization of Single Molecules: An Overview. Springer Series on Fluorescence, 2013, , 27-64.	0.8	7
80	The Emergence of a Coupled Quantum Dot Array in a Doped Silicon Nanowire Gated by Ultrahigh Density Top Gate Electrodesâ€. Journal of Physical Chemistry C, 2007, 111, 17852-17860.	1.5	6
81	Direct Correlation of Single-Particle Motion to Amorphous Microstructural Components of Semicrystalline Poly(ethylene oxide) Electrolytic Films. Journal of Physical Chemistry Letters, 2020, 11, 4849-4858.	2.1	5
82	Dynamic, Spontaneous Blistering of Substrate-Supported Graphene in Acidic Solutions. ACS Nano, 2022, 16, 6145-6152.	7.3	3
83	Asymmetrically Positioned Flagellar Control Units Regulate Human Sperm Rotation. SSRN Electronic Journal, 0, , .	0.4	1
84	Evolutionary Diversity of Protein Nanodomains within Mammalian Sperm. Biophysical Journal, 2015, 108, 129a-130a.	0.2	0
85	Structure of Microtubule-Based Microtentacles. Microscopy and Microanalysis, 2015, 21, 235-236.	0.2	0
86	Graphene: Preventing Thin Film Dewetting via Graphene Capping (Adv. Mater. 36/2017). Advanced Materials, 2017, 29, .	11.1	0
87	Oblique-Sectional Single-Molecule Microscopy. , 2018, , .		0
88	Super-resolution writing. Nature Chemistry, 2019, 11, 969-971.	6.6	0
89	Superâ€Resolution Microscopy: Hypotonic Stress Induces Fast, Reversible Degradation of the Vimentin Cytoskeleton via Intracellular Calcium Release (Adv. Sci. 18/2019). Advanced Science, 2019, 6, 1970112.	5.6	0