
Tae June Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3730273/publications.pdf Version: 2024-02-01

TAE LUNE KANC

#	Article	IF	CITATIONS
1	High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nature Communications, 2016, 7, 10600.	5.8	244
2	Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy Harvesters. Advanced Functional Materials, 2012, 22, 477-489.	7.8	180
3	High Power Density Electrochemical Thermocells for Inexpensively Harvesting Lowâ€Grade Thermal Energy. Advanced Materials, 2017, 29, 1605652.	11.1	166
4	High thermopower of ferri/ferrocyanide redox couple in organic-water solutions. Nano Energy, 2017, 31, 160-167.	8.2	131
5	Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Scientific Reports, 2017, 7, 17683.	1.6	120
6	Flexible thermocells for utilization of body heat. Nano Research, 2014, 7, 443-452.	5.8	99
7	Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy. Scientific Reports, 2019, 9, 8706.	1.6	64
8	Self-healable and dual-functional guar gum-grafted-polyacrylamidoglycolic acid-based hydrogels with nano-silver for wound dressings. Carbohydrate Polymers, 2019, 223, 115074.	5.1	63
9	Cross-linking of cellulose nanofiber films with glutaraldehyde for improved mechanical properties. Materials Letters, 2019, 250, 99-102.	1.3	56
10	Fabrication of multifunctional Guar gum-silver nanocomposite hydrogels for biomedical and environmental applications. International Journal of Biological Macromolecules, 2020, 159, 474-486.	3.6	36
11	Diffusion and Current Generation in Porous Electrodes for Thermo-electrochemical Cells. ACS Applied Materials & Interfaces, 2019, 11, 28894-28899.	4.0	33
12	Guar gum graft polymer-based silver nanocomposite hydrogels: synthesis, characterization and its biomedical applications. Journal of Polymer Research, 2020, 27, 1.	1.2	33
13	Autonomous Graphene Vessel for Suctioning and Storing Liquid Body of Spilled Oil. Scientific Reports, 2016, 6, 22339.	1.6	23
14	Stacked double-walled carbon nanotube sheet electrodes for electrochemically harvesting thermal energy. Carbon, 2019, 147, 559-565.	5.4	19
15	A Light-Driven Vibrotactile Actuator with a Polymer Bimorph Film for Localized Haptic Rendering. ACS Applied Materials & Interfaces, 2021, 13, 6597-6605.	4.0	18
16	Reduction of Sheet Resistance and Low-Thermal-Budget Relaxation of Stress Gradients in Polysilicon Microcantilever Beams Using Nickel-Silicides. Journal of Microelectromechanical Systems, 2007, 16, 279-288.	1.7	14
17	An Electricity-Generating Window Made of a Transparent Energy Harvester of Thermocells. ACS Applied Materials & Interfaces, 2021, 13, 21157-21165.	4.0	14
18	Polystyrene nanocomposites reinforced with phenyl isocyanate-treated cellulose nanofibers. Functional Composites and Structures, 2020, 2, 015002.	1.6	12

Tae June Kang

#	Article	IF	CITATIONS
19	Composite films of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate incorporated with carbon nanotube sheet for improved power factor in thermoelectric conversion. Materials Today Communications, 2020, 25, 101568.	0.9	8
20	Resistance Temperature Detectors Fabricated via Dual Fused Deposition Modeling of Polylactic Acid and Polylactic Acid/Carbon Black Composites. Sensors, 2021, 21, 1560.	2.1	7
21	Thermocells for Hybrid Photovoltaic/Thermal Systems. Molecules, 2020, 25, 1928.	1.7	6
22	Manufacturing Process of Polymeric Microneedle Sensors for Mass Production. Micromachines, 2021, 12, 1364.	1.4	6
23	Highâ€Precision Ionic Thermocouples Fabricated Using Potassium Ferri/Ferrocyanide and Iron Perchlorate. Advanced Electronic Materials, 2022, 8, .	2.6	5
24	Paper-Based Ionic Thermocouples for Inexpensive and High-Precision Measurement of Temperature. ACS Applied Materials & Interfaces, 2021, 13, 60154-60162.	4.0	4
25	Carbon Nanotube-Based CMOS Gas Sensor IC: Monolithic Integration of Pd Decorated Carbon Nanotube Network on a CMOS Chip and Its Hydrogen Sensing. IEEE Transactions on Electron Devices, 2011, 58, 3604-3608.	1.6	3
26	Statistical property of the effect of Au nanoparticle decoration on the carbon nanotube network. Applied Physics Letters, 2011, 98, 143106.	1.5	3
27	Temperature Gradientâ€Driven Multilevel and Grayscale Patterning of Tosylateâ€Doped Poly(3,4â€Ethylenedioxythiophene) Films for Flexible and Functional Electronics. Advanced Materials Technologies, 2021, 6, 2100613.	3.0	3
28	Flow-less and shape-conformable CNT sheet nanogenerator for self-powered motion sensor. Nanoscale, 2016, 8, 16719-16724.	2.8	2
29	<i>In situ</i> fabrication of freestanding singleâ€walled carbon nanotube rope interconnection. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2179-2185.	0.8	1
30	Effect of heat treatment with different heat transfer modes on the polymerization of tosylate-doped poly(3,4-ethylenedioxythiophene) films. Scientific Reports, 2022, 12, .	1.6	1
31	Electrical resistance variation of carbonâ€nanotube networks due to surface modification of glass substrate. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1912-1917.	0.8	0
32	Surface plasmon-enhanced terahertz emission from single layer graphene. , 2012, , .		0
33	Preferential dewetting of gold thin films on single walled carbon nanotubes to produce nanogap electrodes. Journal of Materials Chemistry C, 2016, 4, 5725-5730.	2.7	0
34	Temperature Gradientâ€Driven Multilevel and Grayscale Patterning of Tosylateâ€Doped Poly(3,4â€Ethylenedioxythiophene) Films for Flexible and Functional Electronics (Adv. Mater. Technol.) Tj ETQqO	0 0. œBT /(Dværlock 10 ⁻

35	Iron perchlorate electrolytes and nanocarbon electrodes related to the redox reaction. , 2022, , 193-204.	0
----	--	---