
Hubertus Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3730240/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 2004, 431, 147-151.	13.7	2,489
2	Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429, 623-628.	13.7	2,015
3	Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science, 2007, 317, 793-796.	6.0	1,880
4	High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 2008, 453, 379-382.	13.7	1,837
5	A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research, 2006, 111, .	3.3	1,454
6	A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 2014, 106, 14-28.	1.4	1,436
7	One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 2006, 444, 195-198.	13.7	1,111
8	Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 2015, 523, 543-549.	13.7	824
9	Stable Carbon Cycle-Climate Relationship During the Late Pleistocene. Science, 2005, 310, 1313-1317.	6.0	811
10	High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years. Science, 2008, 321, 680-684.	6.0	761
11	Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature, 1999, 398, 121-126.	13.7	686
12	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	13.7	565
13	9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5967-5971.	3.3	557
14	Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature, 2006, 440, 491-496.	13.7	482
15	Revision of the EPICA Dome C CO ₂ record from 800 to 600 kyr before present. Geophysical Research Letters, 2015, 42, 542-549.	1.5	465
16	The EDC3 chronology for the EPICA Dome C ice core. Climate of the Past, 2007, 3, 485-497.	1.3	396
17	Carbon Isotope Constraints on the Deglacial CO ₂ Rise from Ice Cores. Science, 2012, 336, 711-714.	6.0	339
18	Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO 2 in the Taylor Dome, Dome C and DML ice cores. Earth and Planetary Science Letters, 2004, 224, 45-54.	1.8	331

#	Article	IF	CITATIONS
19	An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past, 2013, 9, 1715-1731.	1.3	324
20	Ice Core Records of Atmospheric CO2 Around the Last Three Glacial Terminations. Science, 1999, 283, 1712-1714.	6.0	246
21	Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature, 2009, 461, 507-510.	13.7	203
22	Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: Sources, transport, and deposition. Reviews of Geophysics, 2007, 45, .	9.0	200
23	The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quaternary Science Reviews, 2010, 29, 146-159.	1.4	195
24	Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth and Planetary Science Letters, 2007, 260, 340-354.	1.8	193
25	Dual modes of the carbon cycle since the Last Glacial Maximum. Nature, 1999, 400, 248-250.	13.7	192
26	Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quaternary Science Reviews, 2010, 29, 285-295.	1.4	183
27	Changing boreal methane sources and constant biomass burning during the last termination. Nature, 2008, 452, 864-867.	13.7	173
28	The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development, 2017, 10, 3979-4003.	1.3	171
29	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	5.4	166
30	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	1.3	164
31	Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quaternary Science Reviews, 2010, 29, 182-192.	1.4	163
32	A 156â€ ⁻ kyr smoothed history of the atmospheric greenhouse gases CO ₂ , CH ₄ , and N ₂ O and their radiative forcing. Earth System Science Data, 2017, 9, 363-387.	3.7	157
33	Atmospheric nitrous oxide during the last 140,000years. Earth and Planetary Science Letters, 2010, 300, 33-43.	1.8	154
34	"EDML1": a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years. Climate of the Past, 2007, 3, 475-484.	1.3	143
35	What caused Earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews, 2010, 29, 129-145.	1.4	143
36	Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Climate of the Past, 2012, 8, 609-623.	1.3	136

#	Article	IF	CITATIONS
37	Mode change of millennial CO ₂ variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9755-9760.	3.3	134
38	Nitrate in Greenland and Antarctic ice cores: a detailed description of post-depositional processes. Annals of Glaciology, 2002, 35, 209-216.	2.8	128
39	Quantitative interpretation of atmospheric carbon records over the last glacial termination. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	124
40	Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core. Climate of the Past, 2013, 9, 2489-2505.	1.3	123
41	The role of Southern Ocean processes in orbital and millennial CO2 variations – A synthesis. Quaternary Science Reviews, 2010, 29, 193-205.	1.4	115
42	Little Ice Age clearly recorded in northern Greenland ice cores. Geophysical Research Letters, 1998, 25, 1749-1752.	1.5	114
43	Sulfate and nitrate firn concentrations on the Greenland ice sheet: 2. Temporal anthropogenic deposition changes. Journal of Geophysical Research, 1998, 103, 21935-21942.	3.3	113
44	Carbon kinetic isotope effect in the reaction of CH4with Cl atoms. Geophysical Research Letters, 1995, 22, 1225-1228.	1.5	112
45	Atmospheric near-surface nitrate at coastal Antarctic sites. Journal of Geophysical Research, 1998, 103, 11007-11020.	3.3	111
46	Glacial terminations as southern warmings without northern control. Nature Geoscience, 2009, 2, 206-209.	5.4	109
47	Stable isotopic signatures (δ13C, ÎD) of methane from European landfill sites. Journal of Geophysical Research, 1998, 103, 8251-8265.	3.3	101
48	Spatio-temporal variability in volcanic sulphate deposition over the past 2 kyr in snow pits and firn cores from Amundsenisen, Antarctica. Journal of Claciology, 2004, 50, 137-146.	1.1	90
49	Snow chemistry across Antarctica. Annals of Glaciology, 2005, 41, 167-179.	2.8	90
50	A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception. Climate of the Past, 2013, 9, 2507-2523.	1.3	90
51	Holocene climatic changes in Greenland: Different deuterium excess signals at Greenland Ice Core Project (GRIP) and NorthGRIP. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	88
52	A major glacial-interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice. Quaternary Science Reviews, 2010, 29, 265-273.	1.4	86
53	Proxies and Measurement Techniques for Mineral Dust in Antarctic Ice Cores. Environmental Science & Technology, 2008, 42, 5675-5681.	4.6	81
54	Evolution of the stable carbon isotope composition of atmospheric CO ₂ over the last glacial cycle. Paleoceanography, 2016, 31, 434-452.	3.0	81

#	Article	IF	CITATIONS
55	On the impact of impurities on the densification of polar firn. Earth and Planetary Science Letters, 2012, 325-326, 93-99.	1.8	78
56	In situ observations of the isotopic composition of methane at the Cabauw tall tower site. Atmospheric Chemistry and Physics, 2016, 16, 10469-10487.	1.9	77
57	A tephra lattice for Greenland and a reconstruction of volcanic events spanning 25–45 ka b2k. Quaternary Science Reviews, 2015, 118, 122-141.	1.4	75
58	Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nature Communications, 2018, 9, 1476.	5.8	74
59	Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching. Climate of the Past, 2007, 3, 367-374.	1.3	73
60	Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 51-57.	0.8	71
61	Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP). Climate of the Past, 2013, 9, 749-766.	1.3	70
62	Boreal fire records in Northern Hemisphere ice cores: a review. Climate of the Past, 2016, 12, 2033-2059.	1.3	70
63	Hydrogen Isotopes Preclude Marine Hydrate CH ₄ Emissions at the Onset of Dansgaard-Oeschger Events. Science, 2010, 328, 1686-1689.	6.0	69
64	Postdepositional losses of methane sulfonate, nitrate, and chloride at the European Project for Ice Coring in Antarctica deep-drilling site in Dronning Maud Land, Antarctica. Journal of Geophysical Research, 2004, 109, .	3.3	67
65	Connecting the Greenland ice-core and Uâ^•Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events. Climate of the Past, 2018, 14, 1755-1781.	1.3	62
66	NGRIP CH ₄ concentration from 120 to 10 kyr before present and its relation to a l´ ¹⁵ N temperature reconstruction from the same ice core. Climate of the Past, 2014, 10, 903-920.	1.3	61
67	Sulfate and nitrate firn concentrations on the Greenland ice sheet: 1. Large-scale geographical deposition changes. Journal of Geophysical Research, 1998, 103, 21927-21934.	3.3	59
68	Recent Greenland Accumulation Estimated from Regional Climate Model Simulations and Ice Core Analysis*. Journal of Climate, 2002, 15, 2821-2832.	1.2	59
69	Sulphate record from a northeast Greenland ice core over the last 1200 years based on continuous flow analysis. Annals of Glaciology, 2002, 35, 250-256.	2.8	58
70	Glacial/interglacial wetland, biomass burning, and geologic methane emissions constrained by dual stable isotopic CH ₄ ice core records. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5778-E5786.	3.3	58
71	Atmospheric <i>δ</i> ¹³ CO ₂ and its relation to <i>p</i> CO ₂ and deep ocean <i>δ</i> ¹³ C during the late Pleistocene. Paleoceanography, 2010, 25, .	3.0	57
72	The Southern Hemisphere at glacial terminations: insights from the Dome C ice core. Climate of the Past, 2008, 4, 345-356.	1.3	57

#	Article	IF	CITATIONS
73	Industrial-era decline in subarctic Atlantic productivity. Nature, 2019, 569, 551-555.	13.7	56
74	D/H kinetic isotope effect in the reaction CH4+Cl. Geophysical Research Letters, 1996, 23, 3619-3622.	1.5	55
75	Simulating low frequency changes in atmospheric CO ₂ during the last 740 000 years. Climate of the Past, 2006, 2, 57-78.	1.3	54
76	High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum. Biogeosciences, 2012, 9, 3961-3977.	1.3	54
77	Independent variations of CH4 emissions and isotopic composition over the past 160,000 years. Nature Geoscience, 2013, 6, 885-890.	5.4	54
78	Atmospheric impacts of the strongest known solar particle storm of 775 AD. Scientific Reports, 2017, 7, 45257.	1.6	54
79	Millennial changes in North American wildfire and soil activity over the last glacial cycle. Nature Geoscience, 2015, 8, 723-727.	5.4	53
80	Simulating changes in the terrestrial biosphere during the last glacial/interglacial transition. Global and Planetary Change, 2004, 43, 33-55.	1.6	51
81	A model-based interpretation of low-frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric î"14C. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	51
82	Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO ₂ changes during the past millennium. Tellus, Series B: Chemical and Physical Meteorology, 2022, 57, 51.	0.8	50
83	Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean. Quaternary Science Reviews, 2010, 29, 313-323.	1.4	50
84	Old carbon reservoirs were not important in the deglacial methane budget. Science, 2020, 367, 907-910.	6.0	50
85	CO2 and O2/N2 variations in and just below the bubble–clathrate transformation zone of Antarctic ice cores. Earth and Planetary Science Letters, 2010, 297, 226-233.	1.8	47
86	Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quaternary Science Reviews, 2019, 220, 30-74.	1.4	46
87	Constraints on N ₂ O budget changes since pre-industrial time from new firn air and ice core isotope measurements. Atmospheric Chemistry and Physics, 2006, 6, 493-503.	1.9	45
88	30,000 Years of Cosmic Dust in Antarctic Ice. Science, 2006, 313, 491-491.	6.0	45
89	Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period. Climate of the Past, 2020, 16, 1565-1580.	1.3	44
90	Real-time analysis of <i>l´</i> ¹³ C- and <i>l´</i> D-CH ₄ in ambient air with laser spectroscopy: method development and first intercomparison results. Atmospheric Measurement Techniques, 2016, 9, 263-280.	1.2	43

#	Article	IF	CITATIONS
91	Modelling the Antarctic Ice Sheet across the mid-Pleistocene transition – implications for Oldest Ice. Cryosphere, 2019, 13, 2023-2041.	1.5	42
92	Simultaneous stable isotope analysis of methane and nitrous oxide on ice core samples. Atmospheric Measurement Techniques, 2011, 4, 2607-2618.	1.2	41
93	Earth's radiative imbalance from the Last Glacial Maximum to the present. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14881-14886.	3.3	40
94	Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica: 2. Seasonally resolved chemical records. Journal of Geophysical Research, 2000, 105, 29423-29433.	3.3	39
95	Change in dust variability in the Atlantic sector of Antarctica at the end of the last deglaciation. Climate of the Past, 2012, 8, 135-147.	1.3	39
96	Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Climate of the Past, 2018, 14, 21-37.	1.3	39
97	Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation. Nature, 2014, 516, 234-237.	13.7	38
98	A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for highâ€precision <i>δ</i> D measurements of atmospheric methane extracted from ice cores. Rapid Communications in Mass Spectrometry, 2010, 24, 621-633.	0.7	37
99	Is there 1.5-million-year-old ice near DomeÂC, Antarctica?. Cryosphere, 2017, 11, 2427-2437.	1.5	36
100	Abrupt CO ₂ release to the atmosphere under glacial and early interglacial climate conditions. Science, 2020, 369, 1000-1005.	6.0	35
101	Glacio-meteorological and isotopic studies along the EGIG line, central Greenland. Journal of Glaciology, 1995, 41, 515-527.	1.1	34
102	RADIX: a minimal-resources rapid-access drilling system. Annals of Glaciology, 2014, 55, 34-38.	2.8	34
103	A global picture of the first abrupt climatic event occurring during the last glacial inception. Geophysical Research Letters, 2012, 39, .	1.5	33
104	The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9916-9931.	1.2	32
105	Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core. Cryosphere, 2015, 9, 1633-1648.	1.5	32
106	A New Method for High-Resolution Methane Measurements on Polar Ice Cores Using Continuous Flow Analysis. Environmental Science & Technology, 2009, 43, 5371-5376.	4.6	31
107	Representativeness and seasonality of major ion records derived from NEEM firn cores. Cryosphere, 2014, 8, 1855-1870.	1.5	31
108	Interlaboratory comparison of <i>Î</i> ¹³ C and <i>Î</i> D measurements of atmospheric CH ₄ for combined use of data sets from different laboratories. Atmospheric Measurement Techniques, 2018, 11, 1207-1231.	1.2	31

#	Article	IF	CITATIONS
109	Decadal-scale progression of the onset of Dansgaard–Oeschger warming events. Climate of the Past, 2019, 15, 811-825.	1.3	31
110	Global ocean heat content in the Last Interglacial. Nature Geoscience, 2020, 13, 77-81.	5.4	31
111	Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka). Climate of the Past, 2022, 18, 485-506.	1.3	31
112	A 1,000-year ice core record of interannual to multidecadal variations in atmospheric circulation over the North Atlantic. Climate Dynamics, 2005, 25, 65-74.	1.7	30
113	On the application and interpretation of Keeling plots in paleo climate research – deciphering Î ¹³ C of atmospheric CO ₂ measured in ice cores. Biogeosciences, 2006, 3, 539-556.	1.3	30
114	A gas chromatography/combustion/isotope ratio mass spectrometry system for highâ€precision <i>δ</i> ¹³ C measurements of atmospheric methane extracted from ice core samples. Rapid Communications in Mass Spectrometry, 2008, 22, 3261-3269.	0.7	30
115	Sulfate Spikes in the Deep Layers of EPICA-Dome C Ice Core: Evidence of Glaciological Artifacts. Environmental Science & Technology, 2009, 43, 8737-8743.	4.6	30
116	Impact of an abrupt cooling event on interglacial methane emissions in northern peatlands. Biogeosciences, 2013, 10, 1963-1981.	1.3	30
117	How warm was Greenland during the last interglacial period?. Climate of the Past, 2016, 12, 1933-1948.	1.3	30
118	The future of ice coring: International Partnerships in Ice Core Sciences (IPICS). PAGES News, 2006, 14, 6-10.	0.3	30
119	A glacio-chemical characterization of the new EPICA deep-drilling site on Amundsenisen, Dronning Maud Land, Antarctica. Annals of Glaciology, 2002, 35, 347-354.	2.8	29
120	A sublimation technique for high-precision measurements of Î' ¹³ CO ₂ and mixing ratios of CO ₂ and N ₂ O from air trapped in ice cores. Atmospheric Measurement Techniques, 2011, 4, 1445-1461.	1.2	29
121	Large-scale spatial trends in recent firn chemistry along an east-west transect through central Greenland. Atmospheric Environment, 1996, 30, 3227-3238.	1.9	28
122	Seasonally resolved Alpine and Greenland ice core records of anthropogenic HCl emissions over the 20th century. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	27
123	Soluble and insoluble lithium dust in the EPICA DomeC ice core—Implications for changes of the East Antarctic dust provenance during the recent glacial–interglacial transition. Earth and Planetary Science Letters, 2007, 258, 32-43.	1.8	27
124	Dependence of Eemian Greenland temperature reconstructions on the ice sheet topography. Climate of the Past, 2014, 10, 1221-1238.	1.3	27
125	Single Particle Characterization and Total Elemental Concentration Measurements in Polar Ice Using Continuous Flow Analysis-Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Environmental Science & Technology, 2019, 53, 13275-13283.	4.6	27
126	The anatomy of past abrupt warmings recorded in Greenland ice. Nature Communications, 2021, 12, 2106.	5.8	27

#	Article	IF	CITATIONS
127	On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry. Atmospheric Measurement Techniques, 2013, 6, 1425-1445.	1.2	26
128	Comparative carbon cycle dynamics of the present and last interglacial. Quaternary Science Reviews, 2016, 137, 15-32.	1.4	26
129	Revisiting sites of the South Pole Queen Maud Land Traverses in East Antarctica: Accumulation data from shallow firn cores. Journal of Geophysical Research, 2009, 114, .	3.3	24
130	Climate of the last million years: new insights from EPICA and other records. Quaternary Science Reviews, 2010, 29, 1-7.	1.4	24
131	A refined TALDICE-1a age scale from 55 to 112 ka before present for the Talos Dome ice core based on high-resolution methane measurements. Climate of the Past, 2011, 7, 1001-1009.	1.3	24
132	High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core. Climate of the Past, 2013, 9, 2789-2807.	1.3	24
133	Online technique for isotope and mixing ratios of CH ₄ , N ₂ O, Xe and mixing ratios of organic trace gases on a single ice core sample. Atmospheric Measurement Techniques, 2014, 7, 2645-2665.	1.2	24
134	Bipolar carbon and hydrogen isotope constraints on the Holocene methane budget. Biogeosciences, 2018, 15, 7155-7175.	1.3	24
135	Prevalence of the Antarctic Circumpolar Wave over the last two millenia recorded in Dronning Maud Land ice. Geophysical Research Letters, 2004, 31, .	1.5	23
136	Glaciochemical reconnaissance of a new ice core from Severnaya Zemlya, Eurasian Arctic. Journal of Glaciology, 2005, 51, 64-74.	1.1	23
137	Diffusive equilibration of N ₂ , O ₂ and CO ₂ mixing ratios in a 1.5-million-years-old ice core. Cryosphere, 2014, 8, 245-256.	1.5	23
138	Imprint of large-scale atmospheric transport patterns on sea-salt records in northern Greenland ice cores. Journal of Geophysical Research, 2001, 106, 23977-23984.	3.3	22
139	Greenland accumulation and its connection to the large-scale atmospheric circulation in ERA-Interim and paleoclimate simulations. Climate of the Past, 2013, 9, 2433-2450.	1.3	22
140	A climatological analysis of highâ€precipitation events in Dronning Maud Land, Antarctica, and associated largeâ€scale atmospheric conditions. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,932.	1.2	21
141	Geochemical and Microbiological Studies of Nitrous Oxide Variations within the New NEEM Greenland Ice Core during the Last Glacial Period. Geomicrobiology Journal, 2016, 33, 647-660.	1.0	21
142	115 year ice-core data from Akademii Nauk ice cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change. Journal of Glaciology, 2009, 55, 21-31.	1.1	20
143	High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Scientific Reports, 2018, 8, 15582.	1.6	20
144	Excess methane in Greenland ice cores associated with high dust concentrations. Geochimica Et Cosmochimica Acta, 2020, 270, 409-430.	1.6	20

#	Article	IF	CITATIONS
145	Influence of ice sheet topography on Greenland precipitation during the Eemian interglacial. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,749-10,768.	1.2	19
146	Palynological insights into global change impacts on Arctic vegetation, fire, and pollution recorded in Central Greenland ice. Holocene, 2019, 29, 1189-1197.	0.9	19
147	Modeling past atmospheric CO2: Results of a challenge. Eos, 2005, 86, 341.	0.1	18
148	Impurity Analysis and Microstructure Along the Climatic Transition From MIS 6 Into 5e in the EDML Ice Core Using Cryo-Raman Microscopy. Frontiers in Earth Science, 2019, 7, .	0.8	18
149	Investigating the internal structure of the Antarctic ice sheet: the utility of isochrones for spatiotemporal ice-sheet model calibration. Cryosphere, 2021, 15, 3839-3860.	1.5	18
150	A 1200 year record of accumulation from northern Greenland. Annals of Glaciology, 1995, 21, 19-25.	2.8	17
151	What do accumulation records of single ice cores in Greenland represent?. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	15
152	The influence of regional circulation patterns on wet and dry mineral dust and sea salt deposition over Greenland. Climate Dynamics, 2007, 28, 635-647.	1.7	15
153	Influence of large-scale teleconnection patterns on methane sulfonate ice core records in Dronning Maud Land. Journal of Geophysical Research, 2006, 111, .	3.3	14
154	Atmospheric decadal variability from high-resolution Dome C ice core records of aerosol constituents beyond the Last Interglacial. Quaternary Science Reviews, 2010, 29, 324-337.	1.4	14
155	The response of atmospheric nitrous oxide to climate variations during the last glacial period. Geophysical Research Letters, 2013, 40, 1888-1893.	1.5	14
156	Improving accuracy and precision of ice core ÎƊ(CH ₄) analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation. Atmospheric Measurement Techniques, 2014, 7, 1999-2012.	1.2	14
157	Estimation and calibration of the water isotope differential diffusion length in ice core records. Cryosphere, 2015, 9, 1601-1616.	1.5	14
158	Fe2+ in ice cores as a new potential proxy to detect past volcanic eruptions. Science of the Total Environment, 2019, 654, 1110-1117.	3.9	14
159	Chemical compositions of solid particles present in the Greenland NEEM ice core over the last 110,000 years. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9789-9813.	1.2	13
160	Limited Retreat of the Wilkes Basin Ice Sheet During the Last Interglacial. Geophysical Research Letters, 2020, 47, e2020GL088131.	1.5	13
161	Climatic and insolation control on the high-resolution total air content in the NGRIP ice core. Climate of the Past, 2016, 12, 1979-1993.	1.3	12
162	N ₂ O changes from the Last Glacial Maximum to the preindustrial – Part 1: Quantitative reconstruction of terrestrial and marine emissions using N ₂ O stable isotopes in ice cores. Biogeosciences, 2019, 16, 3997-4021.	1.3	12

#	Article	IF	CITATIONS
163	Volcanic climate forcing preceding the inception of the Younger Dryas: Implications for tracing the Laacher See eruption. Quaternary Science Reviews, 2021, 274, 107260.	1.4	12
164	Snapshots of mean ocean temperature over the last 700 000Âyears using noble gases in the EPICA Dome C ice core. Climate of the Past, 2021, 17, 843-867.	1.3	11
165	Millennial-scale atmospheric CO ₂ variations during the Marine Isotope Stage 6 period (190–135 ka). Climate of the Past, 2020, 16, 2203-2219.	1.3	10
166	Statistical techniques to select detection thresholds for peak signals in ice-core data. Journal of Glaciology, 2005, 51, 655-662.	1.1	8
167	Continuous Flow Analysis of Labile Iron in Ice-Cores. Environmental Science & Technology, 2013, 47, 4416-4425.	4.6	8
168	A centrifugal ice microtome for measurements of atmospheric CO ₂ on air trapped in polar ice cores. Atmospheric Measurement Techniques, 2013, 6, 251-262.	1.2	8
169	No support for carbon storage of >1,000 GtC in northern peatlands. Nature Geoscience, 2021, 14, 465-467.	5.4	8
170	High-resolution aerosol concentration data from the Greenland NorthGRIP and NEEM deep ice cores. Earth System Science Data, 2022, 14, 1215-1231.	3.7	8
171	Glacio-meteorological and isotopic studies along the EGIG line, central Greenland. Journal of Glaciology, 1995, 41, 515-527.	1.1	7
172	Lithium in Greenland ice cores measured by ion chromatography. Annals of Glaciology, 2002, 35, 243-249.	2.8	7
173	N ₂ O changes from the Last Glacial Maximum to the preindustrial – PartÂ2: terrestrial N ₂ O emissions and carbon–nitrogen cycle interactions. Biogeosciences, 2020, 17, 3511-3543.	1.3	7
174	The EPICA challenge to the Earth system modeling community. Eos, 2004, 85, 363.	0.1	6
175	Marine N ₂ O emissions during a Younger Dryas-like event: the role of meridional overturning, tropical thermocline ventilation, and biological productivity. Environmental Research Letters, 2019, 14, 075007.	2.2	6
176	lce-nucleating particle concentrations of the past: insights from a 600-year-old Greenland ice core. Atmospheric Chemistry and Physics, 2020, 20, 12459-12482.	1.9	6
177	CH ₄ and N ₂ O fluctuations during the penultimate deglaciation. Climate of the Past, 2021, 17, 1627-1643.	1.3	5
178	Ice Cores: Archive of the Climate System. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 279-325.	0.1	3
179	High-precision laser spectrometer for multiple greenhouse gas analysis in 1 mL air from ice core samples. Atmospheric Measurement Techniques, 2020, 13, 6391-6406.	1.2	3
180	Stratigraphic templates for ice core records of the past 1.5 Myr. Climate of the Past, 2022, 18, 1563-1577.	1.3	3

#	Article	IF	CITATIONS
181	The Environmental and Climate Record in Polar Ice Cores. Zeitschrift Fâ^šÂºr Europâ^šÂ§isches Unternehmens- Und Verbraucherrecht, 2004, , 149-170.	0.2	2
182	Comment on "Synchronous records of pCO2 and Δ14C suggest rapid, ocean-derived pCO2 fluctuations at the onset of Younger Dryas―by Steinthorsdottir etÂal. Quaternary Science Reviews, 2015, 107, 267-270.	1.4	2
183	Comment on "Changes in atmospheric CO 2 levels recorded by the isotopic signature of n -alkanes from plants" from K.S. Machado and S. Froehner. Global and Planetary Change, 2017, 156, 24-25.	1.6	2
184	Erratum to "Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica― [Earth Planet. Sci. Lett. 260 (2007) 340–354]. Earth and Planetary Science Letters, 2007, 262, 635-636.	1.8	1
185	Corrigendum to "High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum" published in Biogeosciences, 9, 3961–3977, 2012. Biogeosciences, 2012, 9, 4399-4399.	1.3	0
186	Corrigendum to "Dependence of Eemian Greenland temperature reconstructions on the ice sheet topography" published in Clim. Past, 10, 1221–1238, 2014. Climate of the Past, 2014, 10, 1603-1604.	1.3	0