Liliana G Santiago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3730001/publications.pdf Version: 2024-02-01

LILLANA C SANTIACO

#	Article	IF	CITATIONS
1	Interfacial dynamic properties of whey protein concentrate/polysaccharide mixtures at neutral pH. Food Hydrocolloids, 2009, 23, 1253-1262.	5.6	119
2	Interactions between milk whey protein and polysaccharide in solution. Food Chemistry, 2009, 116, 104-113.	4.2	109
3	Multilayer emulsions as a strategy for linseed oil microencapsulation: Effect of pH and alginate concentration. Food Hydrocolloids, 2015, 43, 8-17.	5.6	97
4	Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate andÂsodium alginate. Food Hydrocolloids, 2014, 35, 129-136.	5.6	86
5	Characterisation of freeze-dried flaxseed oil microcapsules obtained by multilayer emulsions. Powder Technology, 2017, 319, 238-244.	2.1	76
6	Gel mechanical properties of milk whey protein–dextran conjugates obtained by Maillard reaction. Food Hydrocolloids, 2013, 31, 26-32.	5.6	73
7	Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins-alginate double layer emulsions. Food Research International, 2019, 119, 931-940.	2.9	72
8	β-Lactoglobulin heat-induced aggregates as carriers of polyunsaturated fatty acids. Food Chemistry, 2014, 158, 66-72.	4.2	68
9	Linoleic acid binding properties of ovalbumin nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 128, 219-226.	2.5	68
10	Novel technologies for the encapsulation of bioactive food compounds. Current Opinion in Food Science, 2016, 7, 78-85.	4.1	64
11	Impact of environment conditions on physicochemical characteristics of ovalbumin heat-induced nanoparticles and on their ability to bind PUFAs. Food Hydrocolloids, 2015, 48, 165-173.	5.6	63
12	Influence of freezing temperature and maltodextrin concentration on stability of linseed oil-in-water multilayer emulsions. Journal of Food Engineering, 2015, 156, 31-38.	2.7	59
13	Milk whey proteins and xanthan gum interactions in solution and at the air–water interface: A rheokinetic study. Colloids and Surfaces B: Biointerfaces, 2010, 81, 50-57.	2.5	52
14	Biopolymer nanoparticles designed for polyunsaturated fatty acid vehiculization: Protein–polysaccharide ratio study. Food Chemistry, 2015, 188, 543-550.	4.2	47
15	Effect of limited enzymatic hydrolysis on linoleic acid binding properties of β-lactoglobulin. Food Chemistry, 2014, 146, 577-582.	4.2	45
16	Protein nanovehicles produced from egg white. Part 1: Effect of pH and heat treatment time on particle size and binding capacity. Food Hydrocolloids, 2017, 73, 67-73.	5.6	41
17	Mechanical and microstructural properties of milk whey protein/espina corona gum mixed gels. LWT - Food Science and Technology, 2012, 48, 69-74.	2.5	37
18	Does dextran molecular weight affect the mechanical properties of whey protein/dextran conjugate gels?. Food Hydrocolloids, 2013, 32, 204-210.	5.6	37

LILIANA G SANTIAGO

#	Article	IF	CITATIONS
19	Formation and colloidal stability of ovalbumin-retinol nanocomplexes. Food Hydrocolloids, 2017, 67, 130-138.	5.6	37
20	Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air–water interface saturation. Colloids and Surfaces B: Biointerfaces, 2011, 85, 306-315.	2.5	34
21	Formation and characterization of self-assembled bovine serum albumin nanoparticles as chrysin delivery systems. Colloids and Surfaces B: Biointerfaces, 2019, 173, 43-51.	2.5	34
22	Rheological characterization of the hydrocolloid from Gleditsia amorphoides seeds. LWT - Food Science and Technology, 2013, 51, 143-147.	2.5	33
23	Foaming characteristics of β-lactoglobulin as affected by enzymatic hydrolysis and polysaccharide addition: Relationships with the bulk and interfacial properties. Journal of Food Engineering, 2012, 113, 53-60.	2.7	32
24	Self-assembly of myristic acid in the presence of choline hydroxide: Effect of molar ratio and temperature. Journal of Colloid and Interface Science, 2015, 445, 285-293.	5.0	31
25	Effect of enzymatic hydrolysis and polysaccharide addition on the β-lactoglobulin adsorption at the air–water interface. Journal of Food Engineering, 2012, 109, 712-720.	2.7	27
26	Complexes between ovalbumin nanoparticles and linoleic acid: Stoichiometric, kinetic and thermodynamic aspects. Food Chemistry, 2016, 211, 819-826.	4.2	24
27	Biopolymer nanoparticles for vehiculization and photochemical stability preservation of retinol. Food Hydrocolloids, 2017, 70, 363-370.	5.6	24
28	Adsorption of soy protein isolate at air–water and oil–water interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323, 155-162.	2.3	23
29	Nanocomplexes based on egg white protein nanoparticles and bioactive compounds as antifungal edible coatings to extend bread shelf life. Food Research International, 2021, 148, 110597.	2.9	22
30	Self-assembled nanoparticles from heat treated ovalbumin as nanocarriers for polyunsaturated fatty acids. Food Hydrocolloids, 2019, 93, 242-252.	5.6	21
31	Comparison between isoelectric precipitation and ultrafiltration processes to obtain Amaranth mantegazzianus protein concentrates at pilot plant scale. Journal of Food Engineering, 2012, 112, 288-295.	2.7	20
32	Total phenolic content and antioxidant activity of different streams resulting from pilot-plant processes to obtain Amaranthus mantegazzianus protein concentrates. Journal of Food Engineering, 2014, 122, 62-67.	2.7	19
33	Preparation of TPP-crosslinked chitosan microparticles by spray drying for the controlled delivery of progesterone intended for estrus synchronization in cattle. Pharmaceutical Research, 2018, 35, 66.	1.7	19
34	Chrysin-loaded bovine serum albumin particles as bioactive nanosupplements. Food and Function, 2020, 11, 6007-6019.	2.1	19
35	Protein nanovehicles produced from egg white. Part 2: Effect of protein concentration and spray drying on particle size and linoleic acid binding capacity. Food Hydrocolloids, 2018, 77, 863-869.	5.6	19
36	Impact of gum arabic and sodium alginate and their interactions with whey protein aggregates on bio-based films characteristics. International Journal of Biological Macromolecules, 2019, 125, 999-1007.	3.6	18

LILIANA G SANTIAGO

#	Article	IF	CITATIONS
37	Using white sorghum flour for gluten-free breadmaking. International Journal of Food Sciences and Nutrition, 2012, 63, 491-497.	1.3	15
38	Chromatographic fractionation and molecular mass characterization of <i>Cercidium praecox</i> (Brea) gum. Journal of the Science of Food and Agriculture, 2016, 96, 4345-4350.	1.7	15
39	Simulated gastrointestinal digestion of inclusion complexes based on ovalbumin nanoparticles and conjugated linoleic acid. Food and Function, 2019, 10, 2630-2641.	2.1	14
40	Protein-polysaccharide associative phase separation applied to obtain a linoleic acid dried ingredient. Food Hydrocolloids, 2017, 71, 158-167.	5.6	12
41	Development of biocarrier for violacein controlled release in the treatment of cancer. Reactive and Functional Polymers, 2019, 136, 122-130.	2.0	11
42	Genistein loaded in self-assembled bovine serum albumin nanovehicles and their effects on mouse mammary adenocarcinoma cells. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111777.	2.5	10
43	In vitro gastrointestinal digestion and cytotoxic effect of ovalbumin-conjugated linoleic acid nanocomplexes. Food Research International, 2020, 137, 109381.	2.9	9
44	Bioactive compounds: Application of albumin nanocarriers as delivery systems. Critical Reviews in Food Science and Nutrition, 2023, 63, 7238-7268.	5.4	8
45	Production of protein nanovehicles by heat treatment of industrial egg white in a batch reactor. Journal of Food Engineering, 2020, 268, 109740.	2.7	7
46	Evaluation of ovalbumin nanocarriers to promote the vehiculization and antifungal properties of cinnamaldehyde in aqueous media. LWT - Food Science and Technology, 2021, 151, 112224.	2.5	5
47	QUALITY EVALUATION OF COMMERCIAL FRANKFURTER BY DETERIORATION INDEX METHOD. Journal of Food Quality, 2005, 28, 467-478.	1.4	4

48 Emerging Technologies for Bioactive Applications in Foods. , 2017, , 205-226.

0