Isamu Ogura

List of Publications by Citations

Source: https://exaly.com/author-pdf/3729763/isamu-ogura-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

27 482 11 21 g-index

27 502 3.6 avg, IF L-index

#	Paper	IF	Citations
27	Identifying sources and mass balance of dioxin pollution in Lake Shinji Basin, Japan. <i>Environmental Science & Environmental &</i>	10.3	74
26	Source and behavior analyses of dioxins based on congener-specific information and their application to Tokyo Bay basin. <i>Chemosphere</i> , 2003 , 53, 315-24	8.4	70
25	Congener-specific characterization of PCDDs/PCDFs in atmospheric deposition: comparison of profiles among deposition, source, and environmental sink. <i>Chemosphere</i> , 2001 , 45, 173-83	8.4	58
24	Atmospheric deposition of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in the Kanto Region, Japan. <i>Chemosphere</i> , 2001 , 44, 1473-87	8.4	57
23	Risk Assessment of the Carbon Nanotube Group. <i>Risk Analysis</i> , 2015 , 35, 1940-56	3.9	43
22	Quantitative source identification of dioxin-like PCBs in Yokohama, Japan, by temperature dependence of their atmospheric concentrations. <i>Environmental Science & Environmental Science & Environment</i>	10.3	29
21	Release potential of single-wall carbon nanotubes produced by super-growth method during manufacturing and handling. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 1265-1280	2.3	24
20	Potential release of carbon nanotubes from their composites during grinding. <i>Journal of Physics: Conference Series</i> , 2013 , 429, 012049	0.3	18
19	Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements. <i>Industrial Health</i> , 2015 , 53, 511-6	2.5	16
18	Aerosol Particle Collection Efficiency of Holey Carbon Film-Coated TEM Grids. <i>Aerosol Science and Technology</i> , 2014 , 48, 758-767	3.4	14
17	Quantitative identification of sources of dioxin-like polychlorinated biphenyls in sediments by a factor analysis model and a chemical mass balance model combined with Monte Carlo techniques. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 277-85	3.8	13
16	Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	11
15	Dustiness testing of engineered nanomaterials. <i>Journal of Physics: Conference Series</i> , 2009 , 170, 012003	3 0.3	11
14	Analysis of atmospheric behavior of PCDDs/PCDFs by a one-compartment box model. <i>Chemosphere</i> , 2003 , 53, 399-412	8.4	7
13	Surface-collection efficiency of Nuclepore filters for nanoparticles. <i>Aerosol Science and Technology</i> , 2016 , 50, 846-856	3.4	7
12	Release characteristics of single-wall carbon nanotubes during manufacturing and handling. <i>Journal of Physics: Conference Series</i> , 2013 , 429, 012057	0.3	6
11	Evaluation of particles released from single-wall carbon nanotube/polymer composites with or without thermal aging by an accelerated abrasion test. <i>Journal of Occupational and Environmental Hygiene</i> , 2014 , 11, 658-64	2.9	4

LIST OF PUBLICATIONS

10	Measurements of cellulose nanofiber emissions and potential exposures at a production facility. <i>NanoImpact</i> , 2020 , 20, 100273	5.6	4	
9	Airborne particles released by crushing CNT composites. <i>Journal of Physics: Conference Series</i> , 2017 , 838, 012015	0.3	3	
8	Experimental Investigation of Particle Resuspension from a Powder Layer Induced by an Ascending Flat Object. <i>Kagaku Kogaku Ronbunshu</i> , 2011 , 37, 317-322	0.4	3	
7	Quantitative evaluation of carbon nanomaterial releases during electric heating wire cutting and sawing machine cutting of expanded polystyrene-based composites using thermal carbon analysis. <i>Journal of Occupational and Environmental Hygiene</i> , 2019 , 16, 165-178	2.9	3	
6	Onsite aerosol measurements for various engineered nanomaterials at industrial manufacturing plants. <i>Journal of Physics: Conference Series</i> , 2011 , 304, 012004	0.3	2	
5	Air exchange rates and advection-diffusion of CO and aerosols in a route bus for evaluation of infection risk <i>Indoor Air</i> , 2022 , 32, e13019	5.4	2	
4	Quantitative measurement of carbon nanotubes released from their composites by thermal carbon analysis. <i>Journal of Physics: Conference Series</i> , 2017 , 838, 012014	0.3	1	
3	Quantitative measurement of carbon nanotubes released from their composites using thermal carbon analysis. <i>Journal of Physics: Conference Series</i> , 2015 , 617, 012014	0.3	1	
2	Particle release from single-wall and multiwall carbon nanotubes in polystyrene-based composites during grinding. <i>Journal of Physics: Conference Series</i> , 2015 , 617, 012028	0.3	1	
1	Developing a Simple Continuous Polydisperse Aerosol Generator for Use in Testing Methods of Measuring Nanomaterials in Workplaces. <i>Journal of Occupational Safety and Health</i> , 2014 , 7, 31-38	0		