Hung-Tao Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3728841/publications.pdf Version: 2024-02-01

ΗμΝΟ-ΤΛΟ ΟΗΟΙΙ

#	Article	IF	CITATIONS
1	High retention supercapacitors using carbon nanomaterials/iron oxide/nickel-iron layered double hydroxides as electrodes. Journal of Energy Storage, 2022, 46, 103805.	8.1	18
2	Binder-free CoMn2O4/carbon nanotubes composite electrodes for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2022, 897, 163231.	5.5	29
3	Composition tunable manganese-doped magnetite microwave absorber composites for radio frequency identification communication. Ceramics International, 2022, 48, 15105-15115.	4.8	7
4	Human Exhalation CO ₂ Sensor Based on the PEI-PEG/ZnO/NUNCD/Si Heterojunction Electrode. ACS Omega, 2022, 7, 15657-15665.	3.5	2
5	Polyethylenimine/Nitrogen-Doped Reduced Graphene Oxide/ZnO Nanorod Layered Composites for Carbon Dioxide Sensing at Room Temperature. ACS Applied Nano Materials, 2022, 5, 6543-6554.	5.0	10
6	Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites. Composites Communications, 2021, 23, 100572.	6.3	34
7	Consequences of gamma-ray irradiation on structural and electronic properties of PEDOT:PSS polymer in air and vacuum environments. RSC Advances, 2021, 11, 20752-20759.	3.6	6
8	Reduced graphene oxide/oyster shell powers/iron oxide composite electrode for high performance supercapacitors. Electrochimica Acta, 2021, 391, 138868.	5.2	21
9	Sulfur Monovacancies in Liquid-Exfoliated MoS ₂ Nanosheets for NO ₂ Gas Sensing. ACS Applied Nano Materials, 2021, 4, 9459-9470.	5.0	27
10	Nitrogen-Incorporated Boron-Doped Nanocrystalline Diamond Nanowires for Microplasma Illumination. ACS Applied Materials & Interfaces, 2021, 13, 55687-55699.	8.0	9
11	Enhancing the Efficiency of a Forward Osmosis Membrane with a Polydopamine/Graphene Oxide Layer Prepared Via the Modified Molecular Layer-by-Layer Method. ACS Omega, 2020, 5, 18738-18745.	3.5	15
12	Green Treatment of Phosphate from Wastewater Using a Porous Bio-Templated Graphene Oxide/MgMn-Layered Double Hydroxide Composite. IScience, 2020, 23, 101065.	4.1	21
13	Influence of gamma-ray irradiation and post-annealing studies on pentacene films: the anisotropic effects on structural and electronic properties. RSC Advances, 2020, 10, 21092-21099.	3.6	9
14	Nitrogen-Incorporated Ovoid-Shaped Nanodiamond Films for Dopamine Detection. ACS Applied Nano Materials, 2020, 3, 11970-11978.	5.0	9
15	Gamma Ray Irradiation Enhances the Linkage of Cotton Fabrics Coated with ZnO Nanoparticles. ACS Omega, 2020, 5, 15129-15135.	3.5	9
16	Flexible Supercapacitors Prepared Using the Peanut-Shell-Based Carbon. ACS Omega, 2020, 5, 14417-14426.	3.5	28
17	Biomass-derived three-dimensional carbon framework for a flexible fibrous supercapacitor and its application as a wearable smart textile. RSC Advances, 2020, 10, 6960-6972.	3.6	33
18	A Facile Microwaveâ€Assisted Method to Prepare Highly Electrosorptive Reduced Graphene Oxide/Activated Carbon Composite Electrode for Capacitive Deionization. Advanced Materials Technologies, 2019, 4, 1900213.	5.8	14

#	Article	IF	CITATIONS
19	Layered composites composed of multi-walled carbon nanotubes/manganese dioxide/carbon fiber cloth for microwave absorption in the X-band. RSC Advances, 2019, 9, 19217-19225.	3.6	25
20	Electro-assisted selective uptake/release of phosphate using a graphene oxide/MgMn-layered double hydroxide composite. Journal of Materials Chemistry A, 2019, 7, 3962-3970.	10.3	31
21	Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding. Composites Part B: Engineering, 2019, 164, 447-457.	12.0	42
22	Manganese ion implanted ultrananocrystalline diamond films: Optical and electrical characterization. Applied Physics Letters, 2019, 114, .	3.3	6
23	Nanoscale measurement of giant saturation magnetization in α″-Fe16N2 by electron energy-loss magnetic chiral dichroism. Ultramicroscopy, 2019, 203, 37-43.	1.9	9
24	Bioinspired networks consisting of spongy carbon wrapped by graphene sheath for flexible transparent supercapacitors. Communications Chemistry, 2019, 2, .	4.5	20
25	Layered hybrid composites using multi-walled carbon nanotube film as reflection layer and multi-walled carbon nanotubes/neodymium magnet/ epoxy as absorption layer perform selective electromagnetic interference shielding. Composites Part B: Engineering, 2019, 161, 617-626.	12.0	31
26	Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochimica Acta, 2018, 266, 284-292.	5.2	64
27	Low Temperature Synthesis of Lithium-Doped Nanocrystalline Diamond Films with Enhanced Field Electron Emission Properties. Nanomaterials, 2018, 8, 653.	4.1	7
28	Superhydrophobic graphene-based sponge as a novel sorbent for crude oil removal under various environmental conditions. Chemosphere, 2018, 207, 110-117.	8.2	48
29	Effect of cation ratio and order on magnetic circular dichroism in the double perovskite Sr2Fe1+Re1-O6. Ultramicroscopy, 2018, 193, 137-142.	1.9	11
30	Biomimetic structure of carbon fiber cloth grafted with poly(N-isopropylacrylamide) for water collection and smart gates. RSC Advances, 2017, 7, 45799-45806.	3.6	10
31	Toxicity analysis of poly(sodium-4-styrenesulfonate) coated graphene on HMEC-1 cells under dynamic conditions mimicking blood flow. RSC Advances, 2017, 7, 51910-51918.	3.6	4
32	Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup. ACS Applied Materials & Interfaces, 2017, 9, 40645-40654.	8.0	32
33	Nitrogen Incorporated Ultrananocrystalline Diamond Microstructures From Bias‣nhanced Microwave N ₂ /CH ₄ â€Plasma Chemical Vapor Deposition. Plasma Processes and Polymers, 2016, 13, 419-428.	3.0	15
34	High-performance flexible electron field emitters fabricated from doped crystalline Si pillar films on polymer substrates. RSC Advances, 2016, 6, 76325-76335.	3.6	2
35	Three-dimensional porous polyaniline/graphene-coated activated carbon fiber electrodes for supercapacitors. RSC Advances, 2016, 6, 111465-111471.	3.6	17
36	Growth, structural and plasma illumination properties of nanocrystalline diamond-decorated graphene nanoflakes. RSC Advances, 2016, 6, 63178-63184.	3.6	19

#	Article	IF	CITATIONS
37	Carbon materials as oil sorbents: a review on the synthesis and performance. Journal of Materials Chemistry A, 2016, 4, 1550-1565.	10.3	298
38	Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl ₄ /H ₂ Microwave Plasma. ACS Applied Materials & Interfaces, 2016, 8, 4624-4632.	8.0	3
39	Heterogranular-Structured Diamond–Cold Nanohybrids: A New Long-Life Electronic Display Cathode. ACS Applied Materials & Interfaces, 2015, 7, 27078-27086.	8.0	15
40	A high carrier-mobility crystalline silicon film directly grown on polyimide using SiCl ₄ /H ₂ microwave plasma for flexible thin film transistors. Journal of Materials Chemistry C, 2015, 3, 7513-7522.	5.5	13
41	High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N ₂ -Plasma Grown Ultrananocrystalline Diamond Films. ACS Applied Materials & Interfaces, 2015, 7, 27526-27538.	8.0	20
42	Catalytically induced nanographitic phase by a platinum-ion implantation/annealing process to improve the field electron emission properties of ultrananocrystalline diamond films. Journal of Materials Chemistry C, 2015, 3, 2632-2641.	5.5	23
43	Highly Conductive Diamond–Graphite Nanohybrid Films with Enhanced Electron Field Emission and Microplasma Illumination Properties. ACS Applied Materials & Interfaces, 2015, 7, 14035-14042.	8.0	13
44	Role of Carbon Nanotube Interlayer in Enhancing the Electron Field Emission Behavior of Ultrananocrystalline Diamond Coated Si-Tip Arrays. ACS Applied Materials & Interfaces, 2015, 7, 7732-7740.	8.0	10
45	An ultrasensitive sandwich type electrochemiluminescence immunosensor for triiodothyronine detection using silver nanoparticle-decorated graphene oxide as a nanocarrier. Biosensors and Bioelectronics, 2015, 71, 476-482.	10.1	17
46	High Mobility of Graphene-Based Flexible Transparent Field Effect Transistors Doped with TiO ₂ and Nitrogen-Doped TiO ₂ . ACS Applied Materials & Interfaces, 2015, 7, 9453-9461.	8.0	30
47	One-Step Process for High-Performance, Adhesive, Flexible Transparent Conductive Films Based on p-Type Reduced Graphene Oxides and Silver Nanowires. ACS Applied Materials & Interfaces, 2015, 7, 18553-18559.	8.0	45
48	Accumulation and toxicity of intravenouslyâ€injected functionalized graphene oxide in mice. Journal of Applied Toxicology, 2015, 35, 1211-1218.	2.8	83
49	Enhanced electron field emission properties from hybrid nanostructures of graphene/Si tip array. RSC Advances, 2015, 5, 2928-2933.	3.6	24
50	Gold Nanobone/Carbon Nanotube Hybrids for the Efficient Nonenzymatic Detection of H ₂ O ₂ and Glucose. Electroanalysis, 2014, 26, 1816-1823.	2.9	11
51	An amperometric urea bisosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode. Biosensors and Bioelectronics, 2014, 56, 64-70.	10.1	39
52	Development of long lifetime cathode materials for microplasma application. RSC Advances, 2014, 4, 47865-47875.	3.6	22
53	Enhancing the stability of microplasma device utilizing diamond coated carbon nanotubes as cathode materials. Applied Physics Letters, 2014, 104, .	3.3	14
54	Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold. Bioresource Technology, 2014, 169, 532-536.	9.6	59

#	Article	IF	CITATIONS
55	Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon, 2014, 80, 725-733.	10.3	93
56	Enhanced field emission properties of a reduced graphene oxide/carbon nanotube hybrid film. Diamond and Related Materials, 2014, 47, 1-6.	3.9	36
57	Electron Field Emission Enhancement of Vertically Aligned Ultrananocrystalline Diamond-Coated ZnO Core–Shell Heterostructured Nanorods. , 2014, 10, 179.		1
58	Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles. Composites Science and Technology, 2013, 80, 80-86.	7.8	185
59	Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells. Materials Science and Engineering C, 2013, 33, 989-995.	7.3	29
60	Using an Au interlayer to enhance electron field emission properties of ultrananocrystalline diamond films. Journal of Applied Physics, 2012, 112, 103711.	2.5	14
61	Electrophoresis of Nanodiamond on the Growth of Ultrananocrystalline Diamond Films on Silicon Nanowires and the Enhancement of the Electron Field Emission Properties. Journal of Physical Chemistry C, 2012, 116, 19867-19876.	3.1	29
62	Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy and Environmental Science, 2012, 5, 7908.	30.8	727
63	Field Emission Enhancement in Ion Implanted Ultraâ€nanocrystalline Diamond Films. Plasma Processes and Polymers, 2009, 6, S834.	3.0	5
64	Gas sensing improvement of carbon nanotubes by NH4OH–flash treatment: a nondestructive purification technique. Journal of Materials Chemistry, 2007, 17, 3581.	6.7	13
65	Synthesis of nano-sized polycrystalline PZT powders using molecular building blocks by designed chemical route. Journal of Nanoparticle Research, 2006, 8, 287-292.	1.9	8
66	MICROWAVE PROPERTIES OF BST AND BST/BMT THIN FILMS GROWN ON SAPPHIRE SUBSTRATE BY EVANESCENT MICROWAVE PROBE. Integrated Ferroelectrics, 2005, 77, 45-50.	0.7	2
67	Laser Annealing of Pb(Zr0.52Ti0.48)O3 Thin Films Using Pulsed Excimer (KrF) Laser. Integrated Ferroelectrics, 2003, 52, 119-126.	0.7	1
68	Ferroelectric Properties of Pb(Zr 1â^'x Ti x)O 3 Graded Thin Films. Ferroelectrics, 2002, 271, 235-240.	0.6	2
69	Compressive Strength of Composite/Concrete Cylinders after Low Energy Impact. Journal of Reinforced Plastics and Composites, 2001, 20, 849-870.	3.1	2
70	Nanofiber Formation in the Fabrication of Carbon/Silicon Carbide Ceramic Matrix Nanocomposites by Slurry Impregnation and Pulse Chemical Vapor Infiltration. Journal of the American Ceramic Society, 2001, 84, 1683-1688.	3.8	11
71	Compression after impact (CAI) strength of concrete cylinders reinforced by non-adhesive filament wound composites. Polymer Composites, 2000, 21, 268-280.	4.6	5
72	Carbon fiber reinforced phenolic Resin/Silica ceramer composites?processing, mechanical and thermal properties. Polymer Composites, 2000, 21, 305-311.	4.6	20

#	Article	IF	CITATIONS
73	Effects of low-energy impact and thermal cycling loadings on fatigue behavior of the quasi-isotropic carbon/epoxy composites. Journal of Polymer Research, 1998, 5, 143-151.	2.4	3
74	Effects of Deposition Mechanisms in the Modeling of Forced-Flow/Temperature-Gradient Chemical Vapor Infiltration. Journal of the American Ceramic Society, 1994, 77, 849-851.	3.8	8
75	Chemical resistance of carbon fiber-reinforced poly(ether ether ketone) and poly(phenylene sulfide) composites. Polymer Composites, 1992, 13, 435-440.	4.6	12
76	Effect of physical aging on the toughness of carbon fiber-reinforced poly(ether ether ketone) and poly(phenylene sulfide) composites. I. Polymer Composites, 1992, 13, 441-447.	4.6	15