
Ali Dabbagh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3728754/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. International Journal of Engineering Science, 2016, 107, 169-182.	5.0	275
2	On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Composite Structures, 2017, 162, 281-293.	5.8	101
3	Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model. Composites Part B: Engineering, 2019, 173, 106955.	12.0	77
4	Magnetoâ€/ electroâ€responsive polymers toward manufacturing, characterization, and biomedical/ soft robotic applications. Applied Materials Today, 2022, 26, 101306.	4.3	70
5	Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mechanics Based Design of Structures and Machines, 2020, 48, 217-240.	4.7	52
6	Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates. Materials Research Express, 2017, 4, 025003.	1.6	51
7	Magnetorheological elastomer composites: Modeling and dynamic finite element analysis. Composite Structures, 2020, 254, 112881.	5.8	49
8	Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: A finite-element study. European Physical Journal Plus, 2019, 134, 1.	2.6	45
9	Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	43
10	Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory. Thin-Walled Structures, 2019, 140, 304-317.	5.3	43
11	Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates. Engineering With Computers, 2020, 36, 879-895.	6.1	42
12	On wave dispersion characteristics of magnetostrictive sandwich nanoplates in thermal environments. European Journal of Mechanics, A/Solids, 2021, 85, 104130.	3.7	41
13	On thermo-mechanical vibration analysis of multi-scale hybrid composite beams. JVC/Journal of Vibration and Control, 2019, 25, 933-945.	2.6	40
14	Vibration analysis of magnetically affected graphene oxide-reinforced nanocomposite beams. JVC/Journal of Vibration and Control, 2019, 25, 2837-2849.	2.6	39
15	Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles. Mechanics Based Design of Structures and Machines, 2021, 49, 487-510.	4.7	38
16	Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate. European Physical Journal Plus, 2016, 131, 1.	2.6	34
17	Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory. Mechanics Based Design of Structures and Machines, 2021, 49, 403-429.	4.7	33
18	Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates. European Physical Journal Plus, 2018, 133, 1.	2.6	32

Ali Dabbagh

#	Article	IF	CITATIONS
19	Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects. Waves in Random and Complex Media, 2018, 28, 215-235.	2.7	31
20	A novel porosity-dependent homogenization procedure for wave dispersion in nonlocal strain gradient inhomogeneous nanobeams. European Physical Journal Plus, 2019, 134, 1.	2.6	31
21	Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory. European Physical Journal Plus, 2017, 132, 1.	2.6	30
22	Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory. Journal of Electromagnetic Waves and Applications, 2018, 32, 138-169.	1.6	30
23	Wave dispersion characteristics of agglomerated multi-scale hybrid nanocomposite beams. Journal of Strain Analysis for Engineering Design, 2019, 54, 276-289.	1.8	30
24	Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory. Waves in Random and Complex Media, 2020, 30, 157-176.	2.7	29
25	Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory. Engineering With Computers, 2021, 37, 2225.	6.1	28
26	An analytical solution for static stability of multi-scale hybrid nanocomposite plates. Engineering With Computers, 2021, 37, 545-559.	6.1	28
27	Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams. European Physical Journal Plus, 2017, 132, 1.	2.6	27
28	Buckling analysis of embedded graphene oxide powder-reinforced nanocomposite shells. Defence Technology, 2021, 17, 226-233.	4.2	27
29	Magnetic field effects on thermally affected propagation of acoustical waves in rotary double-nanobeam systems. Waves in Random and Complex Media, 2021, 31, 25-45.	2.7	26
30	Mechanics of Nanocomposites. , 0, , .		26
31	Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	25
32	Vibration analysis of porous metal foam shells rested on an elastic substrate. Journal of Strain Analysis for Engineering Design, 2019, 54, 199-208.	1.8	25
33	Vibration analysis of porous metal foam plates rested on viscoelastic substrate. Engineering With Computers, 2021, 37, 3727-3739.	6.1	23
34	A machine learning-based model for the estimation of the temperature-dependent moduli of graphene oxide reinforced nanocomposites and its application in a thermally affected buckling analysis. Engineering With Computers, 2021, 37, 2245.	6.1	23
35	Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate. Engineering With Computers, 2022, 38, 301-314.	6.1	22
36	Agglomeration Effects on Static Stability Analysis of Multi-Scale Hybrid Nanocomposite Plates. Computers, Materials and Continua, 2020, 62, 41-64.	1.9	22

Ali Dabbagh

#	Article	IF	CITATIONS
37	On wave dispersion characteristics of double-layered graphene sheets in thermal environments. Journal of Electromagnetic Waves and Applications, 2018, 32, 1869-1888.	1.6	20
38	Static stability analysis of multi-scale hybrid agglomerated nanocomposite shells. Mechanics Based Design of Structures and Machines, 2023, 51, 501-517.	4.7	20
39	Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 4180-4192.	2.1	18
40	Wave dispersion characteristics of heterogeneous nanoscale beams via a novel porosity-based homogenization scheme. European Physical Journal Plus, 2019, 134, 1.	2.6	18
41	Wave Propagation Analysis of Smart Nanostructures. , 0, , .		18
42	Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers. Defence Technology, 2021, 17, 212-225.	4.2	15
43	Postbuckling analysis of meta-nanocomposite beams by considering the CNTs' agglomeration. European Physical Journal Plus, 2021, 136, 1.	2.6	15
44	Wave dispersion characteristics of embedded graphene platelets-reinforced composite microplates. European Physical Journal Plus, 2018, 133, 1.	2.6	14
45	Vibration analysis of multi-scale hybrid nanocomposite shells by considering nanofillers' aggregation. Waves in Random and Complex Media, 2020, , 1-19.	2.7	12
46	Effect of viscoelastic properties of polymer and wavy shape of the CNTs on the vibrational behaviors of CNT/glass fiber/polymer plates. Engineering With Computers, 2022, 38, 4113-4126.	6.1	12
47	Nonlinear forced vibrations of three-phase nanocomposite shells considering matrix rheological behavior and nano-fiber waviness. Engineering With Computers, 2023, 39, 557-574.	6.1	12
48	Smart laminates with an auxetic ply rested on visco-Pasternak medium: Active control of the system's oscillation. Engineering With Computers, 2023, 39, 221-231.	6.1	10
49	Wave dispersion characteristics of orthotropic double-nanoplate-system subjected to a longitudinal magnetic field. Microsystem Technologies, 2018, 24, 2929-2939.	2.0	8
50	Application of the nonlocal strain gradient elasticity on the wave dispersion behaviors of inhomogeneous nanosize beams. European Physical Journal Plus, 2019, 134, 1.	2.6	8
51	Effects of polymer's viscoelastic properties and curved shape of the CNTs on the dynamic response of hybrid nanocomposite beams. Waves in Random and Complex Media, 0, , 1-18.	2.7	8
52	On modeling wave dispersion characteristics of protein lipid nanotubules. Journal of Biomechanics, 2018, 77, 1-7.	2.1	6
53	Wave dispersion in viscoelastic FG nanobeams via a novel spatial–temporal nonlocal strain gradient framework. Waves in Random and Complex Media, 0, , 1-23.	2.7	6
54	Thermo-mechanical wave dispersion analysis of nonlocal strain gradient single-layered graphene sheet rested on elastic medium. Microsystem Technologies, 2019, 25, 587-597.	2.0	5

#	Article	IF	CITATIONS
55	A novel spatial–temporal nonlocal strain gradient theorem for wave dispersion characteristics of FGM nanoplates. Waves in Random and Complex Media, 0, , 1-20.	2.7	5
56	The effects of thermal loadings on wave propagation analysis of multi-scale hybrid composite beams. Waves in Random and Complex Media, 0, , 1-24.	2.7	4