Urania Georgopoulou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3728742/publications.pdf

Version: 2024-02-01

29 papers

598 citations

623734 14 h-index 24 g-index

29 all docs 29 docs citations

times ranked

29

1064 citing authors

#	Article	IF	Citations
1	Hepatocyte autotaxin expression promotes liver fibrosis and cancer. Hepatology, 2017, 65, 1369-1383.	7.3	134
2	Mechanical stimulation of polycystin-1 induces human osteoblastic gene expression via potentiation of the calcineurin/NFAT signaling axis. Cellular and Molecular Life Sciences, 2013, 70, 167-180.	5.4	46
3	Mechanosensor polycystin-1 potentiates differentiation of human osteoblastic cells by upregulating Runx2 expression via induction of JAK2/STAT3 signaling axis. Cellular and Molecular Life Sciences, 2017, 74, 921-936.	5.4	41
4	The role of the NLRP3 inflammasome and the activation of IL- $1\hat{1}^2$ in the pathogenesis of chronic viral hepatic inflammation. Cytokine, 2018, 110, 389-396.	3.2	39
5	The protein phosphatase 2A represents aÂnovel cellular target forÂhepatitis C virus NS5A protein. Biochimie, 2006, 88, 651-662.	2.6	34
6	Hepcidin and the iron enigma in HCV infection. Virulence, 2014, 5, 465-476.	4.4	34
7	Hepatitis C virus modulates lipid regulatory factor Angiopoietin-like 3 gene expression by repressing HNF-1α activity. Journal of Hepatology, 2014, 60, 30-38.	3.7	27
8	Alterations in the iron homeostasis network: A driving force for macrophage-mediated hepatitis C virus persistency. Virulence, 2016, 7, 679-690.	4.4	25
9	Endocytosis of hepatitis C virus non-enveloped capsid-like particles induces MAPK–ERK1/2 signaling events. Cellular and Molecular Life Sciences, 2010, 67, 2491-2506.	5.4	21
10	A complex signaling network involving protein kinase CK2 is required for hepatitis C virus core protein-mediated modulation of the iron-regulatory hepcidin gene expression. Cellular and Molecular Life Sciences, 2014, 71, 4243-4258.	5.4	20
11	HCV Defective Genomes Promote Persistent Infection by Modulating the Viral Life Cycle. Frontiers in Microbiology, 2018, 9, 2942.	3.5	20
12	Evidence for cellular uptake of recombinant hepatitis C virus nonâ€enveloped capsidâ€ike particles. FEBS Letters, 2007, 581, 4049-4057.	2.8	18
13	Human Endogenous Retrovirus-K HML-2 integration within <i>RASGRF2</i> is associated with intravenous drug abuse and modulates transcription in a cell-line model. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10434-10439.	7.1	18
14	The NS5A Protein of the Hepatitis C Virus Genotype 1a Is Cleaved by Caspases to Produce C-terminal-truncated Forms of the Protein That Reside Mainly in the Cytosol. Journal of Biological Chemistry, 2006, 281, 13449-13462.	3.4	16
15	Modulation of IL-2 expression after uptake of hepatitis C virus non-enveloped capsid-like particles: the role of p38 kinase. Cellular and Molecular Life Sciences, 2011, 68, 505-522.	5.4	13
16	MEK5/ERK5/mef2: A novel signaling pathway affected by hepatitis C virus non-enveloped capsid-like particles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1854-1862.	4.1	12
17	HER-3 targeting alters the dimerization pattern of ErbB protein family members in breast carcinomas. Oncotarget, 2016, 7, 5576-5597.	1.8	12
18	Green fluorescent protein – Tagged HCV non-enveloped capsid like particles: Development of a new tool for tracking HCV core uptake. Biochimie, 2009, 91, 903-915.	2.6	11

#	Article	IF	CITATIONS
19	Programmed cell deathâ€1 3′â€untranslated region polymorphism is associated with spontaneous clearance of hepatitis B virus infection. Journal of Medical Virology, 2018, 90, 1730-1738.	5.0	11
20	HCV NS5A co-operates with PKR in modulating HCV IRES-dependent translation. Infection, Genetics and Evolution, 2014, 26, 113-122.	2.3	9
21	Phenotypic and functional alterations of primary human PBMCs induced by HCV non-enveloped capsid-like particles uptake. Cellular and Molecular Life Sciences, 2013, 70, 3463-3474.	5.4	8
22	Impact of Interferon- $\hat{l}\pm$ Receptor-1 Promoter Polymorphisms on the Transcriptome of the Hepatitis B Virus-Associated Hepatocellular Carcinoma. Frontiers in Immunology, 2018, 9, 777.	4.8	8
23	The Hepatitis C virus NS5A and core proteins exert antagonistic effects on <i>HAMP</i> gene expression: the hidden interplay with the MTFâ€1/MRE pathway. FEBS Open Bio, 2021, 11, 237-250.	2.3	6
24	The unexpected function of a highly conserved YXXÎ \mid motif in HCV core protein. Infection, Genetics and Evolution, 2017, 54, 251-262.	2.3	5
25	Differential Expression of the Host Lipid Regulators ANGPTL-3 and ANGPTL-4 in HCV Infection and Treatment. International Journal of Molecular Sciences, 2021, 22, 7961.	4.1	4
26	HCV-Induced Immunometabolic Crosstalk in a Triple-Cell Co-Culture Model Capable of Simulating Systemic Iron Homeostasis. Cells, 2021, 10, 2251.	4.1	2
27	Proximity ligation assay (PLA) to identify HER2-negative breast carcinomas responding in HER-3 targeting agents Journal of Clinical Oncology, 2015, 33, e22184-e22184.	1.6	2
28	Evaluation of alternative serum biomarkers to monitor the progression of chronic HBV and HCV infection. Infection, Genetics and Evolution, 2018, 58, 17-22.	2.3	1
29	Targeting low-expressing ERBB-2 and acquired resistant high-expressing ERBB-2 breast carcinomas Journal of Clinical Oncology, 2013, 31, e11513-e11513.	1.6	1