

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3728649/publications.pdf Version: 2024-02-01

|          |                | 76196        | 33814          |
|----------|----------------|--------------|----------------|
| 177      | 11,778         | 40           | 99             |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
| 181      | 181            | 181          | 5692           |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

ΖΑΤΤΙΛ

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Optics<br>Express, 2012, 20, 4710.                                                                                              | 1.7 | 1,574     |
| 2  | Quantitative Optical Coherence Tomography Angiography of Choroidal Neovascularization in Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 1435-1444.                                                       | 2.5 | 654       |
| 3  | Optical Coherence Tomography Angiography of Optic Disc Perfusion in Glaucoma. Ophthalmology, 2014, 121, 1322-1332.                                                                                                    | 2.5 | 635       |
| 4  | Quantitative optical coherence tomography angiography of vascular abnormalities in the living<br>human eye. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112,<br>E2395-402. | 3.3 | 563       |
| 5  | Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA<br>Ophthalmology, 2015, 133, 1045.                                                                                             | 1.4 | 556       |
| 6  | Quantitative OCT angiography of optic nerve head blood flow. Biomedical Optics Express, 2012, 3, 3127.                                                                                                                | 1.5 | 412       |
| 7  | OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FEATURES OF DIABETIC RETINOPATHY. Retina, 2015, 35, 2371-2376.                                                                                                               | 1.0 | 324       |
| 8  | Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography<br>Angiography in Diabetic Retinopathy. JAMA Ophthalmology, 2016, 134, 367.                                                     | 1.4 | 319       |
| 9  | Projection-resolved optical coherence tomographic angiography. Biomedical Optics Express, 2016, 7, 816.                                                                                                               | 1.5 | 285       |
| 10 | Optical Coherence Tomography Angiography. , 2016, 57, OCT27.                                                                                                                                                          |     | 283       |
| 11 | Macular Perfusion in Healthy Chinese: An Optical Coherence Tomography Angiogram Study. , 2015, 56, 3212.                                                                                                              |     | 230       |
| 12 | Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in<br>Glaucoma. Ophthalmology, 2017, 124, 1589-1599.                                                                      | 2.5 | 215       |
| 13 | Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis.<br>British Journal of Ophthalmology, 2014, 98, 1368-1373.                                                           | 2.1 | 213       |
| 14 | Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomedical Optics Express, 2013, 4, 1909.                                              | 1.5 | 203       |
| 15 | Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography<br>Angiography in Diabetic Retinopathy. JAMA Ophthalmology, 2016, 134, 1411.                                         | 1.4 | 164       |
| 16 | DETECTION OF NONEXUDATIVE CHOROIDAL NEOVASCULARIZATION IN AGE-RELATED MACULAR<br>DEGENERATION WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, 2015, 35, 2204-2211.                                             | 1.0 | 142       |
| 17 | Optical Coherence Tomography Angiography Using the Optovue Device. Developments in Ophthalmology, 2016, 56, 6-12.                                                                                                     | 0.1 | 129       |
| 18 | OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF TIME COURSE OF CHOROIDAL<br>NEOVASCULARIZATION IN RESPONSE TO ANTI-ANGIOGENIC TREATMENT. Retina, 2015, 35, 2260-2264.                                                     | 1.0 | 125       |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Advanced image processing for optical coherence tomographic angiography of macular diseases.<br>Biomedical Optics Express, 2015, 6, 4661.                                                     | 1.5 | 122       |
| 20 | Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system. Optics Letters, 2015, 40, 2305.                           | 1.7 | 112       |
| 21 | Automated Quantification of Nonperfusion in Three Retinal Plexuses Using Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy. , 2016, 57, 5101.              |     | 106       |
| 22 | Optical Coherence Tomography Angiography of Peripapillary Retinal Blood Flow Response to<br>Hyperoxia. , 2015, 56, 3287.                                                                      |     | 105       |
| 23 | Optical coherence tomography angiography: Technical principles and clinical applications in ophthalmology. Taiwan Journal of Ophthalmology, 2017, 7, 115.                                     | 0.3 | 105       |
| 24 | Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology. Biomedical Optics Express, 2016, 7, 3905.              | 1.5 | 104       |
| 25 | Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. Biomedical Optics Express, 2015, 6, 3564.                                            | 1.5 | 96        |
| 26 | Evaluation of Automatically Quantified Foveal Avascular Zone Metrics for Diagnosis of Diabetic<br>Retinopathy Using Optical Coherence Tomography Angiography. , 2018, 59, 2212.               |     | 94        |
| 27 | Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. British Journal of Ophthalmology, 2018, 102, 520-524.                            | 2.1 | 88        |
| 28 | A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale, 2018, 10, 18795-18804.                                     | 2.8 | 86        |
| 29 | Parafoveal Retinal Vascular Response to Pattern Visual Stimulation Assessed with OCT Angiography.<br>PLoS ONE, 2013, 8, e81343.                                                               | 1.1 | 80        |
| 30 | Automated volumetric segmentation of retinal fluid on optical coherence tomography. Biomedical Optics Express, 2016, 7, 1577.                                                                 | 1.5 | 77        |
| 31 | Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence<br>Tomography Angiography. , 2016, 57, 4485.                                                     |     | 77        |
| 32 | Reflectance-based projection-resolved optical coherence tomography angiography [Invited].<br>Biomedical Optics Express, 2017, 8, 1536.                                                        | 1.5 | 76        |
| 33 | Automated Quantification of Nonperfusion Areas in 3 Vascular Plexuses With Optical Coherence<br>Tomography Angiography in Eyes of Patients With Diabetes. JAMA Ophthalmology, 2018, 136, 929. | 1.4 | 76        |
| 34 | Evaluating Polypoidal Choroidal Vasculopathy With Optical Coherence Tomography Angiography. ,<br>2016, 57, OCT526.                                                                            |     | 75        |
| 35 | Sensitivity and Specificity of OCT Angiography to Detect Choroidal Neovascularization.<br>Ophthalmology Retina, 2017, 1, 294-303.                                                             | 1.2 | 71        |
| 36 | Plexus-specific retinal vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography. Progress in Retinal and Eye Research, 2021, 80, 100878.    | 7.3 | 71        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | MEDnet, a neural network for automated detection of avascular area in OCT angiography. Biomedical<br>Optics Express, 2018, 9, 5147.                                                             | 1.5 | 70        |
| 38 | Optical Coherence Tomography Angiography of the Peripapillary Retina in Primary Angle-Closure<br>Glaucoma. American Journal of Ophthalmology, 2017, 182, 194-200.                               | 1.7 | 69        |
| 39 | Relationship Between Retinal Perfusion and Retinal Thickness in Healthy Subjects: An Optical<br>Coherence Tomography Angiography Study. , 2016, 57, OCT204.                                     |     | 67        |
| 40 | Optical Coherence Tomography Angiography Characteristics of Iris Melanocytic Tumors.<br>Ophthalmology, 2017, 124, 197-204.                                                                      | 2.5 | 67        |
| 41 | Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram.<br>Biomedical Optics Express, 2016, 7, 2823.                                                | 1.5 | 66        |
| 42 | Optical Coherence Tomography Angiography in Choroideremia. JAMA Ophthalmology, 2016, 134, 697.                                                                                                  | 1.4 | 62        |
| 43 | Signal Strength Reduction Effects in OCT Angiography. Ophthalmology Retina, 2019, 3, 835-842.                                                                                                   | 1.2 | 59        |
| 44 | Wide-Field OCT Angiography Investigation of the Relationship Between Radial Peripapillary Capillary<br>Plexus Density and Nerve Fiber Layer Thickness. , 2017, 58, 5188.                        |     | 58        |
| 45 | Artificial intelligence in OCT angiography. Progress in Retinal and Eye Research, 2021, 85, 100965.                                                                                             | 7.3 | 54        |
| 46 | Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning. Biomedical Optics Express, 2020, 11, 927.                                          | 1.5 | 51        |
| 47 | DETECTION OF CLINICALLY UNSUSPECTED RETINAL NEOVASCULARIZATION WITH WIDE-FIELD OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, 2020, 40, 891-897.                                             | 1.0 | 50        |
| 48 | Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography. Biomedical Optics Express, 2018, 9, 4429.                    | 1.5 | 46        |
| 49 | Detection of Nonexudative Choroidal Neovascularization and Progression to Exudative Choroidal<br>Neovascularization Using OCT Angiography. Ophthalmology Retina, 2019, 3, 629-636.              | 1.2 | 46        |
| 50 | Retinal capillary oximetry with visible light optical coherence tomography. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11658-11666.            | 3.3 | 45        |
| 51 | Development and validation of a deep learning algorithm for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography. Biomedical Optics Express, 2019, 10, 3257. | 1.5 | 45        |
| 52 | Projection-Resolved Optical Coherence Tomography Angiography of the Peripapillary Retina in<br>Glaucoma. American Journal of Ophthalmology, 2019, 207, 99-109.                                  | 1.7 | 44        |
| 53 | High-speed and widefield handheld swept-source OCT angiography with a VCSEL light source.<br>Biomedical Optics Express, 2021, 12, 3553.                                                         | 1.5 | 43        |
| 54 | OCT Angiography Changes in the 3 Parafoveal Retinal Plexuses in Response to Hyperoxia.<br>Ophthalmology Retina, 2018, 2, 329-336.                                                               | 1.2 | 42        |

| #  | Article                                                                                                                                                                                                                                      | lF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Reconstruction of high-resolution 6×6-mm OCT angiograms using deep learning. Biomedical Optics<br>Express, 2020, 11, 3585.                                                                                                                   | 1.5 | 42        |
| 56 | Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography. Biomedical Optics Express, 2017, 8, 3053.                                                                                                | 1.5 | 40        |
| 57 | Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data. Ophthalmology Science, 2021, 1, 100069.                                                                                            | 1.0 | 40        |
| 58 | DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based on Structural and<br>Angiographic Optical Coherence Tomography. IEEE Transactions on Biomedical Engineering, 2021, 68,<br>1859-1870.                                  | 2.5 | 38        |
| 59 | OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF CHOROIDAL NEOVASCULARIZATION IN FOUR INHERITED RETINAL DYSTROPHIES. Retina, 2016, 36, 2339-2347.                                                                                                 | 1.0 | 37        |
| 60 | Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical<br>Coherence Tomography Using Deep Learning. Translational Vision Science and Technology, 2020, 9, 54.                                              | 1.1 | 37        |
| 61 | Optical Coherence Tomography Angiography Study of Choroidal Neovascularization Early Response after Treatment. Developments in Ophthalmology, 2016, 56, 77-85.                                                                               | 0.1 | 36        |
| 62 | In vivo optical imaging of revascularization after brain trauma in mice. Microvascular Research, 2011, 81, 73-80.                                                                                                                            | 1.1 | 35        |
| 63 | Reduced Retinal Vessel Density in Primary Angle Closure Glaucoma: A Quantitative Study Using Optical<br>Coherence Tomography Angiography. Journal of Glaucoma, 2018, 27, 322-327.                                                            | 0.8 | 35        |
| 64 | Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice. Journal of Biomedical Optics, 2011, 16, 096019.                                                             | 1.4 | 34        |
| 65 | Automated registration and enhanced processing of clinical optical coherence tomography angiography. Quantitative Imaging in Medicine and Surgery, 2016, 6, 391-401.                                                                         | 1.1 | 33        |
| 66 | Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography. Biomedical Optics Express, 2011, 2, 1059.                                                                                     | 1.5 | 32        |
| 67 | Split-spectrum phase-gradient optical coherence tomography angiography. Biomedical Optics Express, 2016, 7, 2943.                                                                                                                            | 1.5 | 32        |
| 68 | Correlation of Outer Retinal Degeneration and Choriocapillaris Loss in Stargardt Disease Using En<br>Face Optical Coherence Tomography and Optical Coherence Tomography Angiography. American<br>Journal of Ophthalmology, 2019, 202, 79-90. | 1.7 | 32        |
| 69 | Optical Coherence Tomographic Angiography of Choroidal Neovascularization Associated With<br>Central Serous Chorioretinopathy. JAMA Ophthalmology, 2015, 133, 1212.                                                                          | 1.4 | 30        |
| 70 | Interchangeability and reliability of macular perfusion parameter measurements using optical coherence tomography angiography. British Journal of Ophthalmology, 2017, 101, 1542-1549.                                                       | 2.1 | 30        |
| 71 | Sonodynamic action of hypocrellin B triggers cell apoptoisis of breast cancer cells involving caspase pathway. Ultrasonics, 2017, 73, 154-161.                                                                                               | 2.1 | 30        |
| 72 | Projection-Resolved Optical Coherence Tomographic Angiography of Retinal Plexuses in Retinitis<br>Pigmentosa. American Journal of Ophthalmology, 2019, 204, 70-79.                                                                           | 1.7 | 30        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Al-based monitoring of retinal fluid in disease activity and under therapy. Progress in Retinal and Eye<br>Research, 2022, 86, 100972.                                                                                                                     | 7.3 | 30        |
| 74 | Artifacts and artifact removal in optical coherence tomographic angiography. Quantitative Imaging in<br>Medicine and Surgery, 2020, 11, 1120-1133.                                                                                                         | 1.1 | 30        |
| 75 | <i>En face</i> Doppler total retinal blood flow measurement with 70ÅkHz spectral optical coherence tomography. Journal of Biomedical Optics, 2015, 20, 066004.                                                                                             | 1.4 | 29        |
| 76 | Automated spectroscopic retinal oximetry with visible-light optical coherence tomography.<br>Biomedical Optics Express, 2018, 9, 2056.                                                                                                                     | 1.5 | 29        |
| 77 | Automated detection of shadow artifacts in optical coherence tomography angiography. Biomedical<br>Optics Express, 2019, 10, 1514.                                                                                                                         | 1.5 | 29        |
| 78 | Optical microâ€angiography images structural and functional cerebral blood perfusion in mice with<br>cranium left intact. Journal of Biophotonics, 2011, 4, 57-63.                                                                                         | 1.1 | 28        |
| 79 | Rodent retinal circulation organization and oxygen metabolism revealed by visible-light optical coherence tomography. Biomedical Optics Express, 2018, 9, 5851.                                                                                            | 1.5 | 28        |
| 80 | Deep learning for the segmentation of preserved photoreceptors on en face optical coherence tomography in two inherited retinal diseases. Biomedical Optics Express, 2018, 9, 3092.                                                                        | 1.5 | 28        |
| 81 | Robust non-perfusion area detection in three retinal plexuses using convolutional neural network in<br>OCT angiography. Biomedical Optics Express, 2020, 11, 330.                                                                                          | 1.5 | 28        |
| 82 | Calibration of optical coherence tomography angiography with a microfluidic chip. Journal of<br>Biomedical Optics, 2016, 21, 1.                                                                                                                            | 1.4 | 27        |
| 83 | Quantitative Evaluation of Choroidal Neovascularization under Pro Re Nata Anti–Vascular<br>Endothelial Growth Factor Therapy with OCT Angiography. Ophthalmology Retina, 2018, 2, 931-941.                                                                 | 1.2 | 27        |
| 84 | Plexus-Specific Detection of Retinal Vascular Pathologic Conditions with Projection-Resolved OCT<br>Angiography. Ophthalmology Retina, 2018, 2, 816-826.                                                                                                   | 1.2 | 27        |
| 85 | Automated segmentation of peripapillary retinal boundaries in OCT combining a convolutional neural network and a multi-weights graph search. Biomedical Optics Express, 2019, 10, 4340.                                                                    | 1.5 | 27        |
| 86 | Classification of Choroidal Neovascularization Using Projection-Resolved Optical Coherence<br>Tomographic Angiography. , 2018, 59, 4285.                                                                                                                   |     | 26        |
| 87 | Maximum value projection produces better en face OCT angiograms than mean value projection.<br>Biomedical Optics Express, 2018, 9, 6412.                                                                                                                   | 1.5 | 26        |
| 88 | Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo. Journal of Biomedical Optics, 2009, 14, 040505.                                                        | 1.4 | 25        |
| 89 | Detection of Reduced Retinal Vessel Density in Eyes with Geographic Atrophy Secondary to Age-Related<br>Macular Degeneration Using Projection-Resolved Optical Coherence Tomography Angiography.<br>American Journal of Ophthalmology, 2020, 209, 206-212. | 1.7 | 25        |
| 90 | Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography.<br>Optics Letters, 2020, 45, 2612.                                                                                                                     | 1.7 | 25        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds. Journal of Biomedical Optics, 2009, 14, 034014.                                                          | 1.4 | 24        |
| 92  | High-resolution wide-field OCT angiography with a self-navigation method to correct microsaccades and blinks. Biomedical Optics Express, 2020, 11, 3234.                                                                 | 1.5 | 24        |
| 93  | Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition. Optics<br>Letters, 2019, 44, 1431.                                                                                          | 1.7 | 24        |
| 94  | Optical coherence tomography angiography in pediatric choroidal neovascularization. American<br>Journal of Ophthalmology Case Reports, 2016, 2, 37-40.                                                                   | 0.4 | 23        |
| 95  | Optical coherence tomographic angiography of choroidal neovascularization ill-defined with fluorescein angiography. British Journal of Ophthalmology, 2017, 101, 45-50.                                                  | 2.1 | 23        |
| 96  | Extended axial imaging range, widefield swept source optical coherence tomography angiography.<br>Journal of Biophotonics, 2017, 10, 1464-1472.                                                                          | 1.1 | 23        |
| 97  | Quantitative OCT Angiography Evaluation of Peripapillary Retinal Circulation after Plaque<br>Brachytherapy. Ophthalmology Retina, 2018, 2, 244-250.                                                                      | 1.2 | 23        |
| 98  | Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes. Biomedical Optics Express, 2018, 9, 3208.                            | 1.5 | 23        |
| 99  | Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT.<br>Biomedical Optics Express, 2017, 8, 4595.                                                                              | 1.5 | 22        |
| 100 | Detecting and measuring areas of choriocapillaris low perfusion in intermediate, non-neovascular age-related macular degeneration. Neurophotonics, 2019, 6, 1.                                                           | 1.7 | 22        |
| 101 | Three-dimensional structural and angiographic evaluation of foveal ischemia in diabetic retinopathy:<br>method and validation. Biomedical Optics Express, 2019, 10, 3522.                                                | 1.5 | 22        |
| 102 | Imaging retinal structures at cellular-level resolution by visible-light optical coherence tomography.<br>Optics Letters, 2020, 45, 2107.                                                                                | 1.7 | 22        |
| 103 | Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography. Journal of Biomedical Optics, 2016, 21, 076010.                                                             | 1.4 | 21        |
| 104 | Projection-resolved optical coherence tomography angiography exhibiting early flow prior to<br>clinically observed retinal angiomatous proliferation. American Journal of Ophthalmology Case<br>Reports, 2017, 8, 53-57. | 0.4 | 21        |
| 105 | Choriocapillaris evaluation in choroideremia using optical coherence tomography angiography.<br>Biomedical Optics Express, 2017, 8, 48.                                                                                  | 1.5 | 21        |
| 106 | Automated drusen detection in dry age-related macular degeneration by multiple-depth, en face optical coherence tomography. Biomedical Optics Express, 2017, 8, 5049.                                                    | 1.5 | 21        |
| 107 | Optical Coherence Tomography Angiography Avascular Area Association With 1-Year Treatment<br>Requirement and Disease Progression in Diabetic Retinopathy. American Journal of Ophthalmology,<br>2020, 217, 268-277.      | 1.7 | 21        |
| 108 | Detecting Blood Flow Response to Stimulation of the Human Eye. BioMed Research International, 2015, 2015, 1-14.                                                                                                          | 0.9 | 20        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk<br>Motion Signal in OCTA. Translational Vision Science and Technology, 2018, 7, 20.                                 | 1.1 | 20        |
| 110 | Characterization of Chorioretinopathy Associated with Mitochondrial Trifunctional Protein Disorders. Ophthalmology, 2016, 123, 2183-2195.                                                                           | 2.5 | 19        |
| 111 | Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography. Biomedical Optics Express, 2017, 8, 1306. | 1.5 | 19        |
| 112 | Invariant features-based automated registration and montage for wide-field OCT angiography.<br>Biomedical Optics Express, 2019, 10, 120.                                                                            | 1.5 | 19        |
| 113 | High dynamic range optical coherence tomography angiography (HDR-OCTA). Biomedical Optics<br>Express, 2019, 10, 3560.                                                                                               | 1.5 | 19        |
| 114 | Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice.<br>Journal of Neuroscience Methods, 2010, 194, 108-115.                                                      | 1.3 | 18        |
| 115 | Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact. Journal of Biomedical Optics, 2010, 15, 030510.                       | 1.4 | 18        |
| 116 | Hematocrit dependence of flow signal in optical coherence tomography angiography. Biomedical Optics Express, 2017, 8, 776.                                                                                          | 1.5 | 18        |
| 117 | Automated detection of preserved photoreceptor on optical coherence tomography in choroideremia based on machine learning. Journal of Biophotonics, 2018, 11, e201700313.                                           | 1.1 | 18        |
| 118 | Measuring Glaucomatous Focal Perfusion Loss in the Peripapillary Retina Using OCT Angiography.<br>Ophthalmology, 2020, 127, 484-491.                                                                                | 2.5 | 18        |
| 119 | Responses of Peripheral Blood Flow to Acute Hypoxia and Hyperoxia as Measured by Optical Microangiography. PLoS ONE, 2011, 6, e26802.                                                                               | 1.1 | 18        |
| 120 | Advantages of Widefield Optical Coherence Tomography in the Diagnosis of Retinopathy of Prematurity. Frontiers in Pediatrics, 2021, 9, 797684.                                                                      | 0.9 | 18        |
| 121 | Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 026001.                             | 1.4 | 17        |
| 122 | Assessing total retinal blood flow in diabetic retinopathy using multiplane en face Doppler optical coherence tomography. British Journal of Ophthalmology, 2018, 102, 126-130.                                     | 2.1 | 17        |
| 123 | Comparison of Central Macular Fluid Volume With Central Subfield Thickness in Patients With<br>Diabetic Macular Edema Using Optical Coherence Tomography Angiography. JAMA Ophthalmology, 2021,<br>139, 734-741.    | 1.4 | 17        |
| 124 | A Deep Learning Network for Classifying Arteries and Veins in Montaged Widefield OCT Angiograms.<br>Ophthalmology Science, 2022, 2, 100149.                                                                         | 1.0 | 17        |
| 125 | 75-degree non-mydriatic single-volume optical coherence tomographic angiography. Biomedical Optics<br>Express, 2019, 10, 6286.                                                                                      | 1.5 | 16        |
| 126 | Sensorless adaptive-optics optical coherence tomographic angiography. Biomedical Optics Express, 2020. 11. 3952.                                                                                                    | 1.5 | 16        |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | 105° field of view non-contact handheld swept-source optical coherence tomography. Optics Letters,<br>2021, 46, 5878.                                                                                                                 | 1.7 | 16        |
| 128 | A Diabetic Retinopathy Classification Framework Based on Deep-Learning Analysis of OCT Angiography.<br>Translational Vision Science and Technology, 2022, 11, 10.                                                                     | 1.1 | 16        |
| 129 | Automated detection of dilated capillaries on optical coherence tomography angiography. Biomedical Optics Express, 2017, 8, 1101.                                                                                                     | 1.5 | 15        |
| 130 | Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography. Biomedical Optics Express, 2017, 8, 5384.                                                                    | 1.5 | 15        |
| 131 | Longitudinal Detection of Radiation-Induced Peripapillary and Macular Retinal Capillary Ischemia<br>Using OCT Angiography. Ophthalmology Retina, 2020, 4, 320-326.                                                                    | 1.2 | 15        |
| 132 | Ultrahigh sensitive optical microangiography reveals depth-resolved microcirculation and its<br>longitudinal response to prolonged ischemic event within skeletal muscles in mice. Journal of<br>Biomedical Optics, 2011, 16, 086004. | 1.4 | 14        |
| 133 | Monitoring retinal responses to acute intraocular pressure elevation in rats with visible light optical coherence tomography. Neurophotonics, 2019, 6, 1.                                                                             | 1.7 | 14        |
| 134 | Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography. Optics Express, 2015, 23, 4212.                                                                                                  | 1.7 | 13        |
| 135 | Retinal Blood Flow Response to Hyperoxia Measured With En Face Doppler Optical Coherence<br>Tomography. , 2016, 57, OCT141.                                                                                                           |     | 12        |
| 136 | Quantification of Nonperfusion Area in Montaged Widefield OCT Angiography Using Deep Learning in<br>Diabetic Retinopathy. Ophthalmology Science, 2021, 1, 100027.                                                                     | 1.0 | 12        |
| 137 | An end-to-end network for segmenting the vasculature of three retinal capillary plexuses from OCT angiographic volumes. Biomedical Optics Express, 2021, 12, 4889.                                                                    | 1.5 | 12        |
| 138 | Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT. Optics Letters, 2018, 43, 2204.                                                                                           | 1.7 | 12        |
| 139 | An Open-Source Deep Learning Network for Reconstruction of High-Resolution OCT Angiograms of<br>Retinal Intermediate and Deep Capillary Plexuses. Translational Vision Science and Technology, 2021,<br>10, 13.                       | 1.1 | 12        |
| 140 | Peripheral OCT Assisted by Scleral Depression in Retinopathy of Prematurity. Ophthalmology Science, 2022, 2, 100094.                                                                                                                  | 1.0 | 12        |
| 141 | Effect of algorithms and covariates in glaucoma diagnosis with optical coherence tomography angiography. British Journal of Ophthalmology, 2022, 106, 1703-1709.                                                                      | 2.1 | 11        |
| 142 | Cognitive decline in older adults: What can we learn from optical coherence tomography<br>( <scp>OCT</scp> )â€based retinal vascular imaging?. Journal of the American Geriatrics Society, 2021, 69,<br>2524-2535.                    | 1.3 | 10        |
| 143 | Application of Corneal Optical Coherence Tomography Angiography for Assessment of Vessel Depth in<br>Corneal Neovascularization. Cornea, 2020, 39, 598-604.                                                                           | 0.9 | 8         |
| 144 | Phase-stabilized complex-decorrelation angiography. Biomedical Optics Express, 2021, 12, 2419.                                                                                                                                        | 1.5 | 8         |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Focal Loss Analysis of Nerve Fiber Layer Reflectance for Glaucoma Diagnosis. Translational Vision<br>Science and Technology, 2021, 10, 9.                                                                                                                     | 1.1 | 8         |
| 146 | Association Between Fluid Volume in Inner Nuclear Layer and Visual Acuity in Diabetic Macular Edema.<br>American Journal of Ophthalmology, 2022, 237, 164-172.                                                                                                | 1.7 | 8         |
| 147 | Sectorwise Visual Field Simulation Using Optical Coherence Tomographic Angiography Nerve Fiber<br>Layer Plexus Measurements in Glaucoma. American Journal of Ophthalmology, 2020, 212, 57-68.                                                                 | 1.7 | 7         |
| 148 | Optical coherence tomographic angiography study of perfusion recovery after surgical lowering of intraocular pressure. Scientific Reports, 2021, 11, 17251.                                                                                                   | 1.6 | 7         |
| 149 | LABEL-FREE 3D OPTICAL MICROANGIOGRAPHY IMAGING OF FUNCTIONAL VASA NERVORUM AND PERIPHERAL MICROVASCULAR TREE IN THE HIND LIMB OF DIABETIC MICE. Journal of Innovative Optical Health Sciences, 2010, 03, 307-313.                                             | 0.5 | 5         |
| 150 | Widefield Optical Coherence Tomography in Pediatric Retina: A Case Series of Intraoperative<br>Applications Using a Prototype Handheld Device. Frontiers in Medicine, 0, 9, .                                                                                 | 1.2 | 5         |
| 151 | Doppler optical microangiography improves the quantification of local fluid flow and shear stress within 3-D porous constructs. Journal of Biomedical Optics, 2009, 14, 050504.                                                                               | 1.4 | 4         |
| 152 | Directional Reflectivity of the Ellipsoid Zone in Dry Age-Related Macular Degeneration. Ophthalmic<br>Surgery Lasers and Imaging Retina, 2021, 52, 145-152.                                                                                                   | 0.4 | 4         |
| 153 | Deep learning-based signal-independent assessment of macular avascular area on 6×6 mm optical<br>coherence tomography angiogram in diabetic retinopathy: a comparison to instrument-embedded<br>software. British Journal of Ophthalmology, 2023, 107, 84-89. | 2.1 | 4         |
| 154 | Automated phase unwrapping in Doppler optical coherence tomography. Journal of Biomedical Optics, 2019, 24, 1.                                                                                                                                                | 1.4 | 4         |
| 155 | Quantitative evaluation of retinal artery occlusion using optical coherence tomography angiography.<br>Medicine (United States), 2018, 97, e12652.                                                                                                            | 0.4 | 3         |
| 156 | Normative intercapillary distance and vessel density data in the temporal retina assessed by wide-field spectral-domain optical coherence tomography angiography. Experimental Biology and Medicine, 2021, 246, 2230-2237.                                    | 1.1 | 3         |
| 157 | Geographic Atrophy Progression Is Associated With Choriocapillaris Flow Deficits Measured With<br>Optical Coherence Tomographic Angiography. , 2021, 62, 28.                                                                                                  |     | 3         |
| 158 | Plexus-specific retinal capillary avascular area in exudative age-related macular degeneration with projection-resolved OCT angiography. British Journal of Ophthalmology, 2022, 106, 719-723.                                                                | 2.1 | 2         |
| 159 | Ultra-widefield handheld swept-source OCT for peripheral retinal imaging. , 2022, , .                                                                                                                                                                         |     | 2         |
| 160 | Depth-resolved optical imaging of hemodynamic response in mouse brain with microcirculatory beds. , 2011, , .                                                                                                                                                 |     | 1         |
| 161 | Clinical Applications of Doppler OCT and OCT Angiography. , 2015, , 1413-1428.                                                                                                                                                                                |     | 1         |
| 162 | Optische KohÃænztomographie-Angiographie mit dem Optovue-System. Karger Kompass<br>Ophthalmologie, 2017, 3, 58-63.                                                                                                                                            | 0.0 | 1         |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Polarizationâ€multiplexed, dualâ€beam swept source optical coherence tomography angiography. Journal<br>of Biophotonics, 2018, 11, e201700303.                                      | 1.1 | 1         |
| 164 | Quantitative optical coherence tomography angiography of the peripapillary circulation in glaucoma.<br>Annals of Eye Science, 2017, 2, 8-8.                                         | 1.1 | 1         |
| 165 | In situ monitoring of localized shear stress and fluid flow within developing tissue constructs by<br>Doppler optical coherence tomography. Proceedings of SPIE, 2008, , .          | 0.8 | 0         |
| 166 | The study of effects of pore architecture in chitosan scaffolds on the fluid flow pattern by Doppler OCT. Proceedings of SPIE, 2010, , .                                            | 0.8 | 0         |
| 167 | Optical micro-angiography reveals depth-resolved muscular microcirculation. , 2011, , .                                                                                             |     | 0         |
| 168 | High sensitive volumetric imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography. Proceedings of SPIE, 2011, , .                              | 0.8 | 0         |
| 169 | Label-free in vivo optical micro-angiography imaging of cerebral capillary blood flow within meninges and cortex in mice with the skull left intact. Proceedings of SPIE, 2011, , . | 0.8 | 0         |
| 170 | Emerging imaging developments in experimental vision sciences and ophthalmology. Experimental<br>Biology and Medicine, 2021, 246, 2137-2139.                                        | 1.1 | 0         |
| 171 | A novel and effective scan pattern for velocimetric OCT angiography (Conference Presentation). , 2019, , .                                                                          |     | 0         |
| 172 | Self-tracking real-time wide-field OCT angiography (Conference Presentation). , 2020, , .                                                                                           |     | 0         |
| 173 | 75-degree high-resolution wide-field OCT angiography enabled by self-tracking method. , 2020, , .                                                                                   |     | 0         |
| 174 | Diabetic Retinopathy in Optical Coherence Tomography Angiography. ESASO Course Series, 2020, , 53-60.                                                                               | 0.1 | 0         |
| 175 | Automated choroidal neovascularization diagnosis and quantification using convolutional neural networks in OCT angiography (Conference Presentation). , 2020, , .                   |     | 0         |
| 176 | Sensorless adaptive optics optical coherence tomographic angiography (OCTA) of the retinal plexuses (Conference Presentation). , 2020, , .                                          |     | 0         |
| 177 | Optical coherence tomography angiography of non-exudative choroidal neovascularization. Yan Ke<br>Xue Bao = Eye Science, 2016, 31, 243-245.                                         | 0.1 | 0         |