List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/372849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chicken hepatomegaly and splenomegaly associated with novel subgroup J avian leukosis virus infection. BMC Veterinary Research, 2022, 18, 32.	0.7	9
2	Toxicity assessments and transcriptional effects of monofunctionalized Pt(II) complex under dark and light irradiation condition in Caenorhabditis elegans. Journal of Inorganic Biochemistry, 2022, 230, 111720.	1.5	2
3	FAdV-4 without <i>Fiber-2</i> Is a Highly Attenuated and Protective Vaccine Candidate. Microbiology Spectrum, 2022, 10, e0143621.	1.2	16
4	Glycosylation of ALV-J Envelope Protein at Sites 17 and 193 Is Pivotal in the Virus Infection. Journal of Virology, 2022, 96, JVI0154921.	1.5	6
5	A Novel Recombinant FAdV-4 Virus with Fiber of FAdV-8b Provides Efficient Protection against Both FAdV-4 and FAdV-8b. Viruses, 2022, 14, 376.	1.5	15
6	An Efficient and Rapid Assay for Detecting Neutralizing Antibodies Against Serotype 4 Fowl Adenovirus. Frontiers in Veterinary Science, 2022, 9, 867697.	0.9	2
7	Identification of three novel B cell epitopes in ORF2 protein of the emerging goose astrovirus and their application. Applied Microbiology and Biotechnology, 2022, 106, 855-863.	1.7	7
8	Identification of a Novel Insertion Site HVT-005/006 for the Generation of Recombinant Turkey Herpesvirus Vector. Frontiers in Microbiology, 2022, 13, .	1.5	6
9	Isolation and characterization of multidrugâ€resistant <i>Klebsiella pneumoniae</i> from raw cow milk in Jiangsu and Shandong provinces, China. Transboundary and Emerging Diseases, 2021, 68, 1033-1039.	1.3	30
10	The tyrosine phosphatase SHP-2 dephosphorylated by ALV-J via its Env efficiently promotes ALV-J replication. Virulence, 2021, 12, 1721-1731.	1.8	4
11	Domain in Fiber-2 interacted with KPNA3/4 significantly affects the replication and pathogenicity of the highly pathogenic FAdV-4. Virulence, 2021, 12, 754-765.	1.8	25
12	A novel fiber-2-edited live attenuated vaccine candidate against the highly pathogenic serotype 4 fowl adenovirus. Veterinary Research, 2021, 52, 35.	1.1	22
13	An Anti-Tumor Vaccine Against Marek's Disease Virus Induces Differential Activation and Memory Response of γδT Cells and CD8 T Cells in Chickens. Frontiers in Immunology, 2021, 12, 645426.	2.2	17
14	Novel mutation of avian leukosis virus subgroup J from Tibetan chickens. Poultry Science, 2021, 100, 100931.	1.5	6
15	An efficient peptide-based ELISA for differentiating fowl adenovirus 4–infected chickens from vaccinated chickens. Journal of Veterinary Diagnostic Investigation, 2021, 33, 762-766.	0.5	1
16	BODIPY-Appended Pt(II) Complexes with High Toxicities and Anti-chemoresistance Performances in a Cisplatin Resistant <i>In Vivo</i> Model. Inorganic Chemistry, 2021, 60, 10047-10055.	1.9	3
17	Isolation and Molecular Characteristics of a CIAV Isolate From Pigeons, China. Frontiers in Veterinary Science, 2021, 8, 669154.	0.9	4
18	Characterization of Subtype H6 Avian Influenza A Viruses Isolated From Wild Birds in Poyang Lake, China. Frontiers in Veterinary Science, 2021, 8, 685399.	0.9	6

#	Article	IF	CITATIONS
19	A Cross-Reactive Monoclonal Antibody Against Neuraminidases of Both H9N2 and H3N2 Influenza Viruses Shows Protection in Mice Challenging Models. Frontiers in Microbiology, 2021, 12, 730449.	1.5	3
20	Synergistic pathogenesis of chicken infectious anemia virus and J subgroup of avian leukosis virus. Poultry Science, 2021, 100, 101468.	1.5	8
21	Development of colloidal gold-based test strip for rapid detection of serotype 4 fowl adenovirus. Journal of Virological Methods, 2021, 296, 114231.	1.0	4
22	Peptide enzymeâ€linked immunosorbent assay (pELISA) as a possible alternative to the neutralization test for evaluating the immune response to IBV vaccine. BMC Veterinary Research, 2021, 17, 51.	0.7	2
23	Identification of key residues involved in the neuraminidase antigenic variation of H9N2 influenza virus. Emerging Microbes and Infections, 2021, 10, 210-219.	3.0	8
24	Regulation of Avian Leukosis Virus Subgroup J Replication by Wnt/β-Catenin Signaling Pathway. Viruses, 2021, 13, 1968.	1.5	10
25	A novel linear and broadly neutralizing peptide in the SARS-CoV-2 S2 protein for universal vaccine development. Cellular and Molecular Immunology, 2021, 18, 2563-2565.	4.8	13
26	Antiviral Effect of Lithium Chloride on Replication of Marek's Disease Virus in Chicken Embryonic Fibroblasts. International Journal of Molecular Sciences, 2021, 22, 12375.	1.8	1
27	A Novel Fiber-1-Edited and Highly Attenuated Recombinant Serotype 4 Fowl Adenovirus Confers Efficient Protection Against Lethal Challenge. Frontiers in Veterinary Science, 2021, 8, 759418.	0.9	6
28	Development of Real-Time PCR Based on A137R Gene for the Detection of African Swine Fever Virus. Frontiers in Veterinary Science, 2021, 8, 753967.	0.9	6
29	Isolation, Identification, and Genomic Characterization of Chicken Astrovirus Isolates From China. Frontiers in Veterinary Science, 2021, 8, 800649.	0.9	1
30	Isolation and Molecular Characteristics of a Novel Recombinant Avian Orthoreovirus From Chickens in China. Frontiers in Veterinary Science, 2021, 8, 771755.	0.9	6
31	Identification of Hemagglutinin Mutations Caused by Neuraminidase Antibody Pressure. Microbiology Spectrum, 2021, 9, e0143921.	1.2	5
32	Geese not susceptible to virulent subgroup J avian leukosis virus isolated from chickens. Avian Pathology, 2020, 49, 29-35.	0.8	2
33	Antiviral effect of baicalin on Marek's disease virus in CEF cells. BMC Veterinary Research, 2020, 16, 371.	0.7	13
34	OASL Triggered by Novel Goose Astrovirus via ORF2 Restricts Its Replication. Journal of Virology, 2020, 94, .	1.5	14
35	Generation and molecular characteristics of a highly attenuated GPV strain through adaptation in GEF cells. BMC Veterinary Research, 2020, 16, 456.	0.7	0
36	The Isolation and Molecular Characterization of an Astrovirus From "Yellow―Chickens, China. Frontiers in Veterinary Science, 2020, 7, 581862.	0.9	12

#	Article	IF	CITATIONS
37	HSC70 is required for infectious bursal disease virus (IBDV) infection in DF-1 cells. Virology Journal, 2020, 17, 65.	1.4	7
38	Gp37 Regulates the Pathogenesis of Avian Leukosis Virus Subgroup J via Its C Terminus. Journal of Virology, 2020, 94, .	1.5	15
39	Fiber-1, Not Fiber-2, Directly Mediates the Infection of the Pathogenic Serotype 4 Fowl Adenovirus via Its Shaft and Knob Domains. Journal of Virology, 2020, 94, .	1.5	31
40	Revisiting cellular immune response to oncogenic Marek's disease virus: the rising of avian T-cell immunity. Cellular and Molecular Life Sciences, 2020, 77, 3103-3116.	2.4	17
41	An efficient fiber-based ELISA for detection of antibody against fowl adenovirus serotypes 7 and 8. Journal of Veterinary Diagnostic Investigation, 2020, 32, 444-449.	0.5	2
42	A Peptide-Based Enzyme-Linked Immunosorbent Assay for Detecting Antibodies Against Avian Infectious Bronchitis Virus. Frontiers in Veterinary Science, 2020, 7, 619601.	0.9	1
43	Generation of a recombinant chickenized monoclonal antibody against the neuraminidase of H9N2 avian influenza virus. AMB Express, 2020, 10, 151.	1.4	7
44	A Single Mutation N166D in Hemagglutinin Affects Antigenicity and Pathogenesis of H9N2 Avian Influenza Virus. Viruses, 2019, 11, 709.	1.5	21
45	Co-infection of vvMDV with multiple subgroups of avian leukosis viruses in indigenous chicken flocks in China. BMC Veterinary Research, 2019, 15, 288.	0.7	16
46	An endogenous retroviral element exerts an antiviral innate immune function via the derived lncRNA lnc-ALVE1-AS1. Antiviral Research, 2019, 170, 104571.	1.9	24
47	Two novel monoclonal antibodies against fiber-1 protein of FAdV-4 and their application in detection of FAdV-4/10. BMC Veterinary Research, 2019, 15, 232.	0.7	12
48	Peptides with 16R in S2 protein showed broad reactions with sera against different types of infectious bronchitis viruses. Veterinary Microbiology, 2019, 236, 108391.	0.8	8
49	Detection of ALV p27 in cloacal swabs and virus isolation medium by sELISA. BMC Veterinary Research, 2019, 15, 383.	0.7	8
50	Molecular characterization of bovine leukemia virus reveals existence of genotype 4 in Chinese dairy cattle. Virology Journal, 2019, 16, 108.	1.4	8
51	A recombination efficiently increases the pathogenesis of the novel K subgroup of avian leukosis virus. Veterinary Microbiology, 2019, 231, 214-217.	0.8	18
52	A novel linear epitope crossing Group 1 and Group 2 influenza A viruses located in the helix A of HA2 derived from H7N9. Veterinary Microbiology, 2019, 228, 39-44.	0.8	8
53	A novel monoclonal antibodies-based sandwich ELISA for detection of serotype 4 fowl adenovirus. Avian Pathology, 2019, 48, 204-208.	0.8	11
54	Identification of novel B cell epitopes in the fiber protein of serotype 8 Fowl adenovirus. AMB Express, 2019, 9, 172.	1.4	6

#	Article	IF	CITATIONS
55	Antiviral effect of lithium chloride on replication of avian leukosis virus subgroup J in cell culture. Archives of Virology, 2018, 163, 987-995.	0.9	10
56	ldentification of novel B-cell epitope in gp85 of subgroup J avian leukosis virus and its application in diagnosis of disease. BMC Veterinary Research, 2018, 14, 295.	0.7	7
57	A novel monoclonal antibody efficiently blocks the infection of serotype 4 fowl adenovirus by targeting fiber-2. Veterinary Research, 2018, 49, 29.	1.1	28
58	A chicken liver cell line efficiently supports the replication of ALV-J possibly through its high level viral receptor and efficient protein expression system. Veterinary Research, 2018, 49, 41.	1.1	7
59	A novel CAV derived cell-penetrating peptide efficiently delivers exogenous molecules through caveolae-mediated endocytosis. Veterinary Research, 2018, 49, 16.	1.1	19
60	Novel avian leukosis viruses from domestic chicken breeds in mainland China. Archives of Virology, 2017, 162, 2073-2076.	0.9	21
61	Identification of a novel recombinant virulent avian infectious bronchitis virus. Veterinary Microbiology, 2017, 199, 120-127.	0.8	32
62	Double-stranded RNA induces chicken T-cell lymphoma apoptosis by TRIF and NF-κB. Scientific Reports, 2017, 7, 7547.	1.6	6
63	Identification of a novel linear B-cell epitope in the p27 of Avian leukosis virus. Virus Research, 2017, 238, 253-257.	1.1	5
64	Identification of two conserved B-cell epitopes in the gp90 of reticuloendothelial virus using peptide microarray. Veterinary Microbiology, 2017, 211, 107-111.	0.8	8
65	Expression patterns of endogenous avian retrovirus ALVE1 and its response to infection with exogenous avian tumour viruses. Archives of Virology, 2017, 162, 89-101.	0.9	13
66	Toll-like receptor 3 pathway restricts Marek's disease virus infection. Oncotarget, 2017, 8, 70847-70853.	0.8	10
67	Development of a novel immuno-PCR for detection of avian leukosis virus. Journal of Virological Methods, 2016, 236, 25-28.	1.0	5
68	Impact of a potential glycosylation site at neuraminidase amino acid 264 of influenza A/H9N2 virus. Veterinary Microbiology, 2016, 196, 9-13.	0.8	3
69	Expression of the env gene from the avian endogenous retrovirus ALVE and regulation by miR-155. Archives of Virology, 2016, 161, 1623-1632.	0.9	14
70	Membrane-associated GRP78 helps subgroup J avian leucosis virus enter cells. Veterinary Research, 2016, 47, 92.	1.1	12
71	Outbreaks of serotype 4 fowl adenovirus with novel genotype, China. Emerging Microbes and Infections, 2016, 5, 1-12.	3.0	82
72	Identification of amino acids in H9N2 influenza virus neuraminidase that are critical for the binding of two mouse monoclonal antibodies. Veterinary Microbiology, 2016, 187, 58-63.	0.8	8

#	Article	IF	CITATIONS
73	Activation of Toll-like receptor 3 inhibits Marek's disease virus infection in chicken embryo fibroblast cells. Archives of Virology, 2016, 161, 521-528.	0.9	26
74	Transcriptional Profiling of Host Gene Expression in Chicken Embryo Fibroblasts Infected with Reticuloendotheliosis Virus Strain HA1101. PLoS ONE, 2015, 10, e0126992.	1.1	18
75	An efficient and rapid influenza gene cloning strategy for reverse genetics system. Journal of Virological Methods, 2015, 222, 91-94.	1.0	14
76	Transcriptional Analysis of Host Responses to Marek's Disease Virus Infection in Chicken Thymus. Intervirology, 2015, 58, 95-105.	1.2	8
77	Identification of novel viral receptors with cell line expressing viral receptor-binding protein. Scientific Reports, 2015, 5, 7935.	1.6	23
78	The transcription factor TCF-1 initiates the differentiation of TFH cells during acute viral infection. Nature Immunology, 2015, 16, 991-999.	7.0	200
79	Both MicroRNA-155 and Virus-Encoded MiR-155 Ortholog Regulate TLR3 Expression. PLoS ONE, 2015, 10, e0126012.	1.1	32
80	Outbreak of Marek's disease in a vaccinated broiler breeding flock during its peak egg-laying period in China. BMC Veterinary Research, 2015, 11, 157.	0.7	27
81	ALV-J GP37 Molecular Analysis Reveals Novel Virus-Adapted Sites and Three Tyrosine-Based Env Species. PLoS ONE, 2015, 10, e0122887.	1.1	6
82	Genetic characterization of porcine kobuvirus and detection of coinfecting pathogens in diarrheic pigs in Jiangsu Province, China. Archives of Virology, 2014, 159, 3407-3412.	0.9	17
83	Transcription analysis of the response of chicken bursa of Fabricius to avian leukosis virus subgroup J strain JS09GY3. Virus Research, 2014, 188, 8-14.	1.1	26
84	A label-free impedimetric immunosensor for detection of 1-aminohydantoin residue in food samples based on sol–gel embedding antibody. Food Control, 2014, 39, 185-191.	2.8	27
85	Label-free microcantilever-based immunosensors for highly sensitive determination of avian influenza virus H9. Mikrochimica Acta, 2014, 181, 403-410.	2.5	12
86	Marek's disease virus may interfere with T cell immunity by TLR3 signals. Veterinary Research Communications, 2014, 38, 149-156.	0.6	12
87	Antigenic Mapping of the Hemagglutinin of an H9N2 Avian Influenza Virus Reveals Novel Critical Amino Acid Positions in Antigenic Sites. Journal of Virology, 2014, 88, 3898-3901.	1.5	45
88	The risk factors for avian influenza on poultry farms: A meta-analysis. Preventive Veterinary Medicine, 2014, 117, 1-6.	0.7	17
89	Transcriptional profile of Marek's disease virus genes in chicken thymus during different phases of MDV infection. Archives of Virology, 2013, 158, 1787-1793.	0.9	11
90	Expression kinetics of chicken β2-microglobulin and Class I MHC in vitro and in vivo during Marek's disease viral infections. Veterinary Research Communications, 2013, 37, 277-283.	0.6	10

#	Article	IF	CITATIONS
91	Proteomics of DF-1 cells infected with avian leukosis virus subgroup J. Virus Research, 2012, 167, 314-321.	1.1	14
92	Analysis of protein expression profiles in the thymus of chickens infected with Marek's disease virus. Virology Journal, 2012, 9, 256.	1.4	17
93	Development of an impedimetric immunosensor for the determination of 3-amino-2-oxazolidone residue in food samples. Analytica Chimica Acta, 2011, 706, 120-127.	2.6	38
94	Detecting 5-morpholino-3-amino-2-oxazolidone residue in food with label-free electrochemical impedimetric immunosensor. Food Control, 2011, 22, 1609-1616.	2.8	37
95	Development and validation of an indirect enzyme-linked immunosorbent assay for the detection of <i>Avian leukosis virus</i> antibodies based on a recombinant capsid protein. Journal of Veterinary Diagnostic Investigation, 2011, 23, 991-993.	0.5	14
96	Recombinant avian leukosis viruses of subgroup J isolated from field infected commercial layer chickens with hemangioma and myeloid leukosis possess an insertion in the E element. Veterinary Research Communications, 2010, 34, 619-632.	0.6	53
97	Intranasal Delivery of an IgA Monoclonal Antibody Effective against Sublethal H5N1 Influenza Virus Infection in Mice. Vaccine Journal, 2010, 17, 1363-1370.	3.2	36
98	Proteomic analysis of the host response in the bursa of Fabricius of chickens infected with Marek's disease virus. Virus Research, 2010, 153, 250-257.	1.1	26
99	MDV-1 VP22: a transporter that can selectively deliver proteins into cells. Archives of Virology, 2009, 154, 1027-1034.	0.9	3
100	MDV-1 VP22 conjugated VP2 enhancing immune response against infectious bursal disease virus by DNA vaccination in mice. Science in China Series C: Life Sciences, 2008, 51, 981-986.	1.3	2
101	Expression and intercellular trafficking of the VP22 protein of CVI988/Rispens vaccine strain of Marek's disease virus. Science in China Series C: Life Sciences, 2007, 50, 75-79.	1.3	10
102	Development and Characterization of Monoclonal Antibodies to Subgroup J Avian Leukosis Virus. Avian Diseases, 2001, 45, 938.	0.4	74