Meng-Chun Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3728370/publications.pdf

Version: 2024-02-01

236925 276875 1,801 41 25 41 citations h-index g-index papers 43 43 43 1865 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	PEP-sNASP Peptide Alleviates LPS-Induced Acute Lung Injury Through the TLR4/TRAF6 Axis. Frontiers in Medicine, 2022, 9, 832713.	2.6	3
2	Regulation of CIC-2 Chloride Channel Proteostasis by Molecular Chaperones: Correction of Leukodystrophy-Associated Defect. International Journal of Molecular Sciences, 2021, 22, 5859.	4.1	0
3	CUL4-DDB1-CRBN E3 Ubiquitin Ligase Regulates Proteostasis of ClC-2 Chloride Channels: Implication for Aldosteronism and Leukodystrophy. Cells, 2020, 9, 1332.	4.1	11
4	Regulation of liver receptor homologue-1 by DDB2 E3 ligase activity is critical for hepatic glucose metabolism. Scientific Reports, 2019, 9, 5304.	3.3	11
5	Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB Journal, 2018, 32, 3321-3335.	0.5	31
6	Bisphenol A disrupts steroidogenesis and induces a sex hormone imbalance through c-Jun phosphorylation in Leydig cells. Chemosphere, 2017, 185, 237-246.	8.2	50
7	Proximal GATA-binding sites are essential for human HSD3B1 gene transcription in the placenta. Scientific Reports, 2017, 7, 4271.	3.3	8
8	A calreticulin-dependent nuclear export signal is involved in the regulation of liver receptor homologue-1 protein folding. Biochemical Journal, 2015, 471, 199-209.	3.7	7
9	The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels. Scientific Reports, 2015, 5, 10667.	3.3	50
10	Local Anesthetics Induce Apoptosis in Human Thyroid Cancer Cells through the Mitogen-Activated Protein Kinase Pathway. PLoS ONE, 2014, 9, e89563.	2.5	105
11	Local Anesthetics Induce Apoptosis in Human Breast Tumor Cells. Anesthesia and Analgesia, 2014, 118, 116-124.	2.2	120
12	Feedback Control of Adrenal Steroidogenesis via H2O2-Dependent, Reversible Inactivation of Peroxiredoxin III in Mitochondria. Molecular Cell, 2012, 46, 584-594.	9.7	149
13	Regulation of steroid production: Analysis of Cyp11a1 promoter. Molecular and Cellular Endocrinology, 2011, 336, 80-84.	3.2	77
14	Identification of two functional nuclear localization signals mediating nuclear import of liver receptor homologue-1. Cellular and Molecular Life Sciences, 2011, 68, 1241-1253.	5.4	10
15	Differential regulation of the human $\langle i \rangle$ CYP11A1 $\langle i \rangle$ promoter in mouse brain and adrenals. Journal of Cellular Physiology, 2011, 226, 1998-2005.	4.1	10
16	Docosahexaenoic acid induces proteasome-dependent degradation of estrogen receptor α and inhibits		
	the downstream signaling target in MCF-7 breast cancer cells. Journal of Nutritional Biochemistry, 2010, 21, 512-517.	4.2	25
17	the downstream signaling target in MCF-7 breast cancer cells. Journal of Nutritional Biochemistry,	4.2	25

#	Article	IF	Citations
19	HumanCYP11A1 promoter drives Cre recombinase expression in the brain in addition to adrenals and gonads. Genesis, 2007, 45, 59-65.	1.6	16
20	Transcriptional regulation of human CYP11A1 in gonads and adrenals. Journal of Biomedical Science, 2007, 14, 509-515.	7.0	42
21	Steroidogenesis in zebrafish and mouse models. Molecular and Cellular Endocrinology, 2006, 248, 160-163.	3.2	38
22	Function of Cyp11a1 in animal models. Molecular and Cellular Endocrinology, 2004, 215, 95-100.	3.2	61
23	Transcriptional Regulation of <i>CYP11A1</i> . Journal of Biomedical Science, 2003, 10, 593-598.	7.0	33
24	Steroid Deficiency Syndromes in Mice with Targeted Disruption of Cyp11a1. Molecular Endocrinology, 2002, 16, 1943-1950.	3.7	141
25	Regulation of steroidogenesis in transgenic mice and zebrafish. Molecular and Cellular Endocrinology, 2001, 171, 9-14.	3.2	42
26	Action of hormone responsive sequence in 2.3 kb promoter of CYP11A1. Molecular and Cellular Endocrinology, 2001, 175, 205-210.	3.2	19
27	Functions of the Upstream and Proximal Steroidogenic Factor 1 (SF-1)-Binding Sites in the CYP11A1 Promoter in Basal Transcription and Hormonal Response. Molecular Endocrinology, 2001, 15, 812-818.	3.7	109
28	Functions of the Upstream and Proximal Steroidogenic Factor 1 (SF-1)-Binding Sites in the CYP11A1 Promoter in Basal Transcription and Hormonal Response. Molecular Endocrinology, 2001, 15, 812-818.	3.7	26
29	Tissue-Specific, Hormonal, and Developmental Regulation of (i) SCC-LacZ (li) Expression in Transgenic Mice Leads to Adrenocortical Zone Characterization (sup) 1 (lsup). Endocrinology, 1999, 140, 5609-5618.	2.8	55
30	Tissue-Specific, Hormonal, and Developmental Regulation of SCC-LacZ Expression in Transgenic Mice Leads to Adrenocortical Zone Characterization. Endocrinology, 1999, 140, 5609-5618.	2.8	14
31	Adenovirus E1B 19K Protein Is Required for Efficient DNA Replication in U937 Cells. Virology, 1997, 227, 295-304.	2.4	11
32	Function and membrane topology of wild-type and mutated cytochrome <i>P</i> -450c21. Biochemical Journal, 1996, 316, 325-329.	3.7	21
33	Structure and expression of the CYP21 (P450c21, steroid 21-hydroxylase) gene with respect to its deficiency. Endocrine Research, 1995, 21, 343-352.	1.2	11
34	Amplification of P450c21 expression in cultured mammalian cells. Biochemical and Biophysical Research Communications, 1992, 186, 426-431.	2.1	7
35	Regulated expression of cytochrome <i>P</i> -450scc (cholesterol-side-chain cleavage enzyme) in cultured cell lines detected by antibody against bacterially expressed human protein. Biochemical Journal, 1991, 274, 813-817.	3.7	66
36	Expression and Functional Study of Wild-Type and Mutant Human Cytochrome P450c21 inSaccharomyces cerevisiae. DNA and Cell Biology, 1991, 10, 201-209.	1.9	29

#	Article	IF	CITATIONS
37	An in vitro transcription termination system to analyze chloroplast promoters: identification of multiple promoters for the spinach atpB gene. Current Genetics, 1990, 17, 55-64.	1.7	29
38	Expression of Human 21-Hydroxylase (P450c21) in Bacterial and Mammalian Cells: A System to Characterize Normal and Mutant Enzymes. Molecular Endocrinology, 1990, 4, 893-898.	3.7	41
39	A missense mutation at Ile172Asn or Arg356Trp causes steroid 21-hydroxylase deficiency Journal of Biological Chemistry, 1990, 265, 3549-3552.	3.4	133
40	A missense mutation at Ile172Asn or Arg356Trp causes steroid 21-hydroxylase deficiency. Journal of Biological Chemistry, 1990, 265, 3549-52.	3.4	98
41	The 5′-region of the P450XIA1 (P450scc) gene contains a basal promoter and an adrenal-specific activating domain. Biochemical and Biophysical Research Communications, 1989, 160, 276-281.	2.1	30