List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/372803/publications.pdf Version: 2024-02-01

		44042	54882
121	7,488	48	84
papers	citations	h-index	g-index
121	121	121	7294
all docs	docs citations	times ranked	citing authors

ΗΠΥΛΝΟ

#	Article	IF	CITATIONS
1	A review on chitosan-based flocculants and their applications in water treatment. Water Research, 2016, 95, 59-89.	5.3	530
2	Coagulation/flocculation in dewatering of sludge: A review. Water Research, 2018, 143, 608-631.	5.3	476
3	Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. Journal of Hazardous Materials, 2014, 268, 191-198.	6.5	287
4	Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. Journal of Hazardous Materials, 2012, 229-230, 371-380.	6.5	251
5	Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. Journal of Hazardous Materials, 2013, 254-255, 36-45.	6.5	236
6	Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Scientific Reports, 2020, 10, 7824.	1.6	174
7	Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere, 2016, 154, 310-318.	4.2	161
8	Enhanced and selective adsorption of copper(II) ions on surface carboxymethylated chitosan hydrogel beads. Chemical Engineering Journal, 2011, 174, 586-594.	6.6	155
9	Adsorption of anionic dyes from aqueous solutions using chemically modified straw. Bioresource Technology, 2012, 117, 40-47.	4.8	153
10	Flocculation performance and mechanism of graphene oxide for removal of various contaminants from water. Water Research, 2013, 47, 3037-3046.	5.3	153
11	Simple method for preparation of chitosan/poly(acrylic acid) blending hydrogel beads and adsorption of copper(II) from aqueous solutions. Chemical Engineering Journal, 2010, 165, 240-249.	6.6	152
12	Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant. Water Research, 2012, 46, 107-114.	5.3	147
13	Phosphate adsorption from aqueous solutions by disused adsorbents: Chitosan hydrogel beads after the removal of copper(II). Chemical Engineering Journal, 2011, 166, 970-977.	6.6	144
14	Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 380, 143-151.	2.3	140
15	Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere. Chemical Engineering Journal, 2013, 223, 402-411.	6.6	139
16	Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Applied Clay Science, 2018, 151, 20-28.	2.6	137
17	Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water. Water Research, 2016, 96, 126-135.	5.3	126
18	Removal of dyes from aqueous solutions by straw based adsorbents: Batch and column studies. Chemical Engineering Journal, 2011, 168, 1120-1127.	6.6	125

#	Article	IF	CITATIONS
19	Influence of the Surface Structure of Graphene Oxide on the Adsorption of Aromatic Organic Compounds from Water. ACS Applied Materials & Interfaces, 2015, 7, 6690-6697.	4.0	125
20	pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chemical Engineering Journal, 2016, 284, 1397-1405.	6.6	123
21	Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant. Water Research, 2017, 118, 160-166.	5.3	108
22	Flocculation properties of biodegradable amphoteric chitosan-based flocculants. Chemical Engineering Journal, 2011, 172, 287-295.	6.6	106
23	Preparation of chitosan- graft -polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water. Journal of Colloid and Interface Science, 2015, 455, 261-270.	5.0	102
24	Removal of methylene blue from aqueous solutions by straw based adsorbent in a fixed-bed column. Chemical Engineering Journal, 2011, 173, 429-436.	6.6	97
25	Flocculation of <i>Escherichia coli</i> Using a Quaternary Ammonium Salt Grafted Carboxymethyl Chitosan Flocculant. Environmental Science & Technology, 2014, 48, 6867-6873.	4.6	95
26	Evaluation of a novel chitosan-based flocculant with high flocculation performance, low toxicity and good floc properties. Journal of Hazardous Materials, 2014, 276, 480-488.	6.5	92
27	Antiscalants in RO membrane scaling control. Water Research, 2020, 183, 115985.	5.3	89
28	Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride. Chemical Engineering Journal, 2018, 349, 737-747.	6.6	87
29	Flocculation and antimicrobial properties of a cationized starch. Water Research, 2017, 119, 57-66.	5.3	84
30	Preparation of Strong Cationic Chitosan- <i>graft</i> -Polyacrylamide Flocculants and Their Flocculating Properties. Industrial & Engineering Chemistry Research, 2011, 50, 7141-7149.	1.8	80
31	Synthesis of amphoteric starch-based grafting flocculants for flocculation of both positively and negatively charged colloidal contaminants from water. Chemical Engineering Journal, 2014, 244, 209-217.	6.6	80
32	Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose, 2013, 20, 2605-2614.	2.4	78
33	Preparation of dual-function starch-based flocculants for the simultaneous removal of turbidity and inhibition of Escherichia coli in water. Water Research, 2016, 98, 128-137.	5.3	73
34	Rapid Removal and Separation of Iron(II) and Manganese(II) from Micropolluted Water Using Magnetic Graphene Oxide. ACS Applied Materials & Interfaces, 2014, 6, 9871-9880.	4.0	72
35	Solvation Behaviors of <i>N</i> -Isopropylacrylamide in Water/Methanol Mixtures Revealed by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2010, 114, 8652-8658.	1.2	69
36	Efficient removal of both cationic and anionic dyes from aqueous solutions using a novel amphoteric straw-based adsorbent. Carbohydrate Polymers, 2012, 90, 887-893.	5.1	69

#	Article	IF	CITATIONS
37	Effects of substitution degree and molecular weight of carboxymethyl starch on its scale inhibition. Desalination, 2017, 408, 60-69.	4.0	69
38	Evaluation of the structural morphology of starch-graft-poly(acrylic acid) on its scale-inhibition efficiency. Water Research, 2018, 141, 86-95.	5.3	69
39	Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based flocculant. Water Research, 2020, 170, 115361.	5.3	59
40	Efficient flocculation of an anionic dye from aqueous solutions using a cellulose-based flocculant. Cellulose, 2015, 22, 1439-1449.	2.4	58
41	Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance. Journal of Environmental Management, 2017, 196, 63-71.	3.8	58
42	Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater. Chemosphere, 2017, 174, 200-207.	4.2	57
43	Evaluation of the selective adsorption of silica-sand/anionized-starch composite for removal of dyes and Cupper(II) from their aqueous mixtures. International Journal of Biological Macromolecules, 2020, 149, 1285-1293.	3.6	56
44	New insights into viscosity abnormality of sodium alginate aqueous solution. Carbohydrate Polymers, 2010, 81, 948-952.	5.1	53
45	Flocculation of Both Kaolin and Hematite Suspensions Using the Starch-Based Flocculants and Their Floc Properties. Industrial & Engineering Chemistry Research, 2015, 54, 59-67.	1.8	53
46	Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres. Environmental Pollution, 2016, 209, 21-29.	3.7	53
47	Evaluation of the starch-based flocculants on flocculation of hairwork wastewater. Science of the Total Environment, 2017, 601-602, 1628-1637.	3.9	52
48	NMR Study on the Effects of Sodium <i>n</i> -Dodecyl Sulfate on the Coil-to-Globule Transition of Poly(<i>N</i> -isopropylacrylamide) in Aqueous Solutions. Macromolecules, 2011, 44, 6227-6231.	2.2	51
49	Dewaterability of sewage sludge conditioned with a graft cationic starch-based flocculant: Role of structural characteristics of flocculant. Water Research, 2021, 189, 116578.	5.3	49
50	Evaluating the effects of the preoxidation of H2O2, NaClO, and KMnO4 and reflocculation on the dewaterability of sewage sludge. Chemosphere, 2019, 234, 942-952.	4.2	47
51	Insights into the effects of acidification on sewage sludge dewaterability through pH repeated adjustment. Chemosphere, 2019, 227, 269-276.	4.2	46
52	Construction of natural polymeric imprinted materials and their applications in water treatment: A review. Journal of Hazardous Materials, 2021, 403, 123643.	6.5	46
53	Selective adsorption of ofloxacin and ciprofloxacin from a binary system using lignin-based adsorbents: Quantitative analysis, adsorption mechanisms, and structure-activity relationship. Science of the Total Environment, 2021, 765, 144427.	3.9	46
54	Enhanced photo-Fenton degradation of fluoroquinolones in water assisted by a 3D composite sponge complexed with a S-scheme MoS2/Bi2S3/BiVO4 ternary photocatalyst. Applied Catalysis B: Environmental, 2022, 315, 121580.	10.8	44

#	Article	IF	CITATIONS
55	A new method for calculation of flocculation kinetics combining Smoluchowski model with fractal theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 423, 11-19.	2.3	40
56	Enhanced coagulation of low-turbidity micro-polluted surface water: Properties and optimization. Journal of Environmental Management, 2019, 233, 739-747.	3.8	40
57	The flocculating properties of chitosanâ€ <i>graft</i> â€polyacrylamide flocculants (I)—effect of the grafting ratio. Journal of Applied Polymer Science, 2010, 117, 1876-1882.	1.3	39
58	Effects of the content of silane coupling agent KHâ€560 on the properties of LLDPE/magnesium hydroxide composites. Journal of Applied Polymer Science, 2010, 118, 2634-2641.	1.3	39
59	Investigation of multiple adsorption mechanisms for efficient removal of ofloxacin from water using lignin-based adsorbents. Scientific Reports, 2019, 9, 637.	1.6	38
60	A simple strategy for selective photocatalysis degradation of organic dyes through selective adsorption enrichment by using a complex film of CdS and carboxylmethyl starch. Journal of Environmental Management, 2020, 274, 111184.	3.8	38
61	Effect of Surfactant Concentration on the Complex Structure of Poly(<i>N</i> -isopropylacrylamide)/Sodium <i>n</i> -Dodecyl Sulfate in Aqueous Solutions. Macromolecules, 2012, 45, 5524-5529.	2.2	36
62	Hierarchically Z-scheme photocatalyst of {0 1 0}BiVO4/Ag/CdS with enhanced performance in synergistic adsorption-photodegradation of fluoroquinolones in water. Chemical Engineering Journal, 2022, 435, 134834.	6.6	36
63	Evaluation of the structural factors for the flocculation performance of a co-graft cationic starch-based flocculant. Chemosphere, 2020, 240, 124866.	4.2	35
64	Thermal characterization of carbon-nanofiber-reinforced tetraglycidyl-4,4′-diaminodiphenylmethane/4,4′-diaminodiphenylsulfone epoxy composites. Journal of Applied Polymer Science, 2006, 100, 295-298.	1.3	34
65	Scale-inhibition and flocculation dual-functionality of poly(acrylic acid) grafted starch. Journal of Environmental Management, 2018, 210, 273-279.	3.8	33
66	An enhanced coagulation using a starch-based coagulant assisted by polysilicic acid in treating simulated and real surface water. Chemosphere, 2020, 259, 127464.	4.2	33
67	Cationic content effects of biodegradable amphoteric chitosan-based flocculants on the flocculation properties. Journal of Environmental Sciences, 2012, 24, 1378-1385.	3.2	31
68	A quantitative analyses of the viscometric data of the coil-to-globule and globule-to-coil transition of poly(N-isopropylacrylamide) in water. Polymer, 2003, 44, 7175-7180.	1.8	30
69	Synthesis and characterization of biodegradable triblock copolymers based on bacterial poly[(R)-3-hydroxybutyrate] by atom transfer radical polymerization. Journal of Polymer Science Part A, 2005, 43, 4857-4869.	2.5	30
70	New insight into "polyelectrolyte effect― Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 407, 1-8.	2.3	28
71	Modeling and optimization of the flocculation processes for removal of cationic and anionic dyes from water by an amphoteric grafting chitosan-based flocculant using response surface methodology. Environmental Science and Pollution Research, 2015, 22, 13038-13048.	2.7	28
72	Highly selective adsorption of dyes and arsenate from their aqueous mixtures using a silica-sand/cationized-starch composite. Microporous and Mesoporous Materials, 2018, 263, 210-219.	2.2	28

#	Article	IF	CITATIONS
73	Control of gypsum-dominated scaling in reverse osmosis system using carboxymethyl cellulose. Journal of Membrane Science, 2019, 577, 20-30.	4.1	28
74	Treatment of potato starch wastewater by dual natural flocculants of chitosan and poly-glutamic acid. Journal of Cleaner Production, 2020, 264, 121641.	4.6	27
75	Preparation of magnetic chitosan microspheres and its applications in wastewater treatment. Science in China Series B: Chemistry, 2009, 52, 249-256.	0.8	26
76	Amphoteric starch-based flocculants can flocculate different contaminants with even opposite surface charges from water through molecular structure control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455, 28-35.	2.3	26
77	Immobilization of metals in contaminated soils using natural polymer-based stabilizers. Environmental Pollution, 2017, 222, 348-355.	3.7	26
78	Removal of fluoroquinolone antibiotics using actinia-shaped lignin-based adsorbents: Role of the length and distribution of branched-chains. Journal of Hazardous Materials, 2021, 403, 123603.	6.5	25
79	Syntheses, crystal structures, dye degradation and luminescence sensing properties of four coordination polymers. CrystEngComm, 2020, 22, 2327-2335.	1.3	24
80	The flocculating properties of chitosanâ€ <i>graft</i> â€polyacrylamide flocculants (II)—Test in pilot scale. Journal of Applied Polymer Science, 2010, 117, 2016-2024.	1.3	23
81	Evaluation of acidification and oxidation of sludge to improve the effect of a starch-based flocculant on the dewaterability of sewage sludge. Journal of Environmental Management, 2019, 231, 405-412.	3.8	23
82	Application of a green coagulant with PACl in efficient purification of turbid water and its mechanism study. Journal of Environmental Sciences, 2019, 81, 168-180.	3.2	21
83	Glass transition of the two distinct single-chain particles of poly(N-isopropylacrylamide). European Physical Journal E, 2005, 17, 1-5.	0.7	19
84	Investigation of the structure of poly(vinyl alcohol)–iodine complex hydrogels prepared from the concentrated polymer solutions. Polymer, 2008, 49, 785-791.	1.8	18
85	Shear induced self-thickening in chitosan-grafted polyacrylamide aqueous solution. Soft Matter, 2013, 9, 1835-1843.	1.2	18
86	The influence of hydrophobicity on sludge dewatering associated with cationic starch-based flocculants. Journal of Environmental Management, 2021, 296, 113218.	3.8	18
87	Fabrication of environmentally-friendly composited sponges for efficient removal of fluoroquinolones antibiotics from water. Journal of Hazardous Materials, 2022, 426, 127796.	6.5	18
88	Efficient removal of chlorophenols from water with a magnetic reduced graphene oxide composite. Science China Chemistry, 2016, 59, 350-359.	4.2	17
89	The role of solvation on the conformational change during repeated freezing–thawing treatment to an extremely dilute aqueous solution of poly(vinyl alcohol). Polymer, 2005, 46, 7557-7562.	1.8	16
90	Fabrication of 3D lignosulfonate composited sponges impregnated by BiVO4/polyaniline/Ag ternary photocatalyst for synergistic adsorption-photodegradation of fluoroquinolones in water. Chemical Engineering Journal, 2022, 446, 137282.	6.6	16

#	Article	IF	CITATIONS
91	Solid-state 13C NMR investigation of the structure and hydrogen bonding for stereoregular poly(vinyl alcohol) films in the hydrated state. Polymer, 2007, 48, 3850-3857.	1.8	15
92	Effects of Macromolecular Compatibilizers Containing Epoxy Groups on the Properties of Linear Low-Density Polyethylene/Magnesium Hydroxide Composites. Industrial & Engineering Chemistry Research, 2010, 49, 6291-6301.	1.8	14
93	Improvement of the Compatibilization of High-Impact Polystyrene/Magnesium Hydroxide Composites with Partially Sulfonated Polystyrene as Macromolecular Compatibilizers. Industrial & Engineering Chemistry Research, 2012, 51, 9204-9212.	1.8	14
94	Evaluation of structural effects on the antiscaling performance of various graft cellulose-based antiscalants in RO membrane scaling control. Journal of Membrane Science, 2021, 620, 118893.	4.1	13
95	Enhanced reactivity of zero-valent aluminum/O2 by using Fe-bearing clays in 4-chlorophenol oxidation. Science of the Total Environment, 2021, 773, 145661.	3.9	13
96	Evaluation of hydrophobically associating cationic starch-based flocculants in sludge dewatering. Scientific Reports, 2021, 11, 11819.	1.6	12
97	CP/MAS 13C NMR analysis of the structure and hydrogen bonding of melt-crystallized poly(vinyl) Tj ETQq1 1 0.78	4314 rgB ⁻ 1.8	Г /Qverlock 11
98	UNDERSTANDING DIFFERENT LCST LEVELS OF POLY(N-ALKYLACRYLAMIDE)S BY MOLECULAR DYNAMICS SIMULATIONS AND QUANTUM MECHANICS CALCULATIONS. Journal of Theoretical and Computational Chemistry, 2011, 10, 359-370.	1.8	11
99	Single-Chain-Particles of Poly(N-isopropylacrylamide). Macromolecular Rapid Communications, 2002, 23, 1037-1040.	2.0	10
100	Comparison of two starch-based flocculants with polyacrylamide for the simultaneous removal of phosphorus and turbidity from simulated and actual wastewater samples in combination with FeCl3. International Journal of Biological Macromolecules, 2021, 167, 223-232.	3.6	10
101	Synergistically enhanced activation of persulfate for efficient oxidation of organic contaminants using a microscale zero-valent aluminum/Fe-bearing clay composite. Chemical Engineering Journal, 2022, 433, 133682.	6.6	10
102	Chain architectures of various cellulose-based antiscalants on the inhibition of calcium carbonate scale. Scientific Reports, 2020, 10, 21906.	1.6	8
103	Observation of the concentric diffractive banding on the spherulites of poly(ethylene oxide) by a dynamic method. Journal of Applied Polymer Science, 2005, 96, 2454-2458.	1.3	7
104	Efficient removal of fluoroquinolones antibiotics by using kaolin-tannic acid-Fe(III) composite adsorbents from water. Applied Clay Science, 2022, 222, 106490.	2.6	7
105	Analysis of viscosity abnormalities of polyelectrolytes in dilute solutions. Chinese Journal of Polymer Science (English Edition), 2011, 29, 750-756.	2.0	6
106	Simple fabrication of carboxymethyl cellulose and κ-carrageenan composite aerogel with efficient performance in removal of fluoroquinolone antibiotics from water. Frontiers of Environmental Science and Engineering, 2022, 16, .	3.3	6
107	Investigation of the self-association behavior of a thermosensitive copolymer with lower critical solubility temperature near human heat by dynamic laser light scattering. Journal of Applied Polymer Science, 2005, 96, 583-588.	1.3	5
108	Preparation of the individual compact single-chain globular particulates of Poly(N-isopropylacrylamide). Colloid and Polymer Science, 2006, 284, 935-940.	1.0	5

#	Article	IF	CITATIONS
109	Influences of charge properties and hydrophobicity on the coagulation of inorganic and organic matters from water associated with starch-based coagulants. Chemosphere, 2022, 298, 134346.	4.2	5
110	Application of time-temperature superposition principle to polymer transition kinetics. Journal of Applied Polymer Science, 2006, 99, 1767-1772.	1.3	4
111	Composition determination of binary polymer mixtures by size exclusion chromatography with light scattering detection. Chinese Journal of Polymer Science (English Edition), 2010, 28, 291-297.	2.0	4
112	Coagulation Properties of Biodegradable Chitosan-CTA Coagulants in Turbidity Removal. Journal of Environmental Engineering, ASCE, 2013, 139, 1123-1127.	0.7	4
113	Study on the interfacial properties of viscous capillary flow of dilute acetic acid solutions of chitosan. Carbohydrate Polymers, 2009, 78, 488-491.	5.1	3
114	Investigation on the response factors of concentration detectors within sec process. Chinese Journal of Polymer Science (English Edition), 2011, 29, 203-213.	2.0	2
115	Enhanced, rapid, and selective adsorption behaviors of a porous chitosan-based adsorbent. Journal of Sol-Gel Science and Technology, 2017, 81, 284-293.	1.1	2
116	ANALYSIS OF THE COMPOSITION OF COMPLICATED BINARY MIXTURE BY QUANTITATIVE SEC. Acta Polymerica Sinica, 2009, 007, 689-692.	0.0	1
117	New Observation on Morphology of a Thermotropic Liquid Crystalline Polyesterimide Crystallized at High Temperature. Journal of Macromolecular Science - Physics, 2006, 45, 325-334.	0.4	0
118	Analysis of composition complicated binary mixture by quantitative SEC. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 344-347.	0.4	0
119	Exploring Techniques For Sludge Disposal. , 2018, , .		0
120	Evaluating Structural Morphology And Scale Inhibition Of Starch-Graft-Poly(Acrylic Acid). , 2018, , .		0
121	零价铳é"饱和å‡1å‡,棒åጬææ–™æ´»åŒ–氧化å‰,é™è§£4-æ°⁻é…šçš"ç"ç©¶. Scientia Sinica Chimica, 2	20212, , .	0