Alexander L Velikovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3727946/publications.pdf

Version: 2024-02-01

94269 143772 4,165 173 37 citations h-index papers

g-index 173 173 173 1355 docs citations times ranked citing authors all docs

57

#	Article	IF	CITATIONS
1	Self-Generated Plasma Rotation in a Z-Pinch Implosion with Preembedded Axial Magnetic Field. Physical Review Letters, 2022, 128, 015001.	2.9	10
2	Stable and unstable supersonic stagnation of an axisymmetric rotating magnetized plasma. Journal of Fluid Mechanics, 2022, 936, .	1.4	3
3	The stability of expanding reactive shocks in a van der Waals fluid. Physics of Fluids, 2022, 34, .	1.6	10
4	Simulating a pulsed-power-driven plasma with ideal MHD. Physics of Plasmas, 2022, 29, .	0.7	0
5	Bright-Spot Contributions to Hardphoton Continuum K-Shell Yield from Argon and Stainless-Steel Load Implosions on Z. , 2022, , .		O
6	Scaling of Efficient ar K-Shell Emission From Fast Gas-Puff Z-Pinches in the 10 to 100 Ma Current Range. , 2022, , .		0
7	Observation of Self-Generated Plasma Rotation and its Effects in A Z-Pinch With Preembedded Axial Magnetic Field. , 2022, , .		O
8	Time-Dependent Non-LTE Level Kinetics in 1-D MHD Simulations of an Argon Gas Puff Implosion. , 2022, , .		0
9	Progress in the Refining of the K-Shell Yield Scaling Model for Z-Pinch Plasma Radiation Sources. , 2022, , .		O
10	Magnetic field transport in propagating thermonuclear burn. Physics of Plasmas, 2021, 28, .	0.7	8
11	Liner implosion experiments driven by a dynamic screw pinch. Physics of Plasmas, 2021, 28, .	0.7	5
12	Mitigation of magneto-Rayleigh-Taylor instability growth in a triple-nozzle, neutron-producing gas-puff Z pinch. Physical Review E, 2021, 104, L023201.	0.8	6
13	Stability of expanding accretion shocks for an arbitrary equation of state. Journal of Fluid Mechanics, 2021, 927, .	1.4	5
14	Scaling of Efficient AR K-Shell Emission From Fast Gas-Puff Z-Pinches in the $10\mathrm{to}\ 100\mathrm{MA}$ Current Range. , $2021,$, .		0
15	A model for K-shell x-ray yield from magnetic implosions at Sandia's Z machine. , 2021, , .		О
16	Continuum Hard-Photon K-Shell Yields from Z-Pinch Implosions: Present Status and Scaling to Higher Currents., 2021,,.		0
17	Experimental Investigation of the Inductance of an Imploding Z-Pinch Plasma Column Close to Stagnation., 2021,,.		1
18	Stable and Unstable Solutions of the Mag Noh Problem*., 2021,,.		0

#	Article	IF	CITATIONS
19	Multimode Hydrodynamic Instability Growth of Preimposed Isolated Defects in Ablatively Driven Foils. Physical Review Letters, 2020, 125, 055001.	2.9	9
20	Isolated defect evolution in laser accelerated targets. Physics of Plasmas, 2020, 27, 072706.	0.7	6
21	Multi-mode hydrodynamic evolution of perturbations seeded by isolated surface defects. Physics of Plasmas, 2020, 27, .	0.7	6
22	Rayleigh-Taylor Growth of Isolated Bubbles and Spikes in Laser-Driven Foils. , 2020, , .		0
23	Rarefaction Flows and Mitigation of Imprint in Direct-Drive Implosions. Physical Review Letters, 2019, 123, 065001.	2.9	10
24	Effects of a Preembedded Axial Magnetic Field on the Current Distribution in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Z</mml:mi></mml:math> -Pinch Implosion. Physical Review Letters, 2019, 122, 045001.	2.9	29
25	Nernst thermomagnetic waves in magnetized high energy density plasmas. Physics of Plasmas, 2019, 26, .	0.7	8
26	Absolute Hugoniot measurements for CH foams in the 2–9 Mbar range. Physics of Plasmas, 2018, 25, 032705.	0.7	11
27	Simulations of Recent Argon Gas-Puff Implosions on Z With Xe and Kr Dopants. IEEE Transactions on Plasma Science, 2018, 46, 3871-3880.	0.6	2
28	Studies of Implosion and Radiative Properties of Tungsten Planar Wire Arrays on Michigan's Linear Transformer Driver Pulsed-Power Generator. IEEE Transactions on Plasma Science, 2018, 46, 3778-3788.	0.6	3
29	Generalized Noh self-similar solutions of the compressible Euler equations for hydrocode verification. Journal of Computational Physics, 2018, 374, 843-862.	1.9	6
30	Solution of the Noh problem with an arbitrary equation of state. Physical Review E, 2018, 98, 013105.	0.8	7
31	Self-Similar Solutions With Electrothermal Processes for Plasmas of Arbitrary Beta. IEEE Transactions on Plasma Science, 2018, 46, 3766-3777.	0.6	4
32	Absolute Hugoniot Measurements for CH Foams in the 2-9 MBAR Range. , 2018, , .		0
33	Self-Similar Solutions with Electro-Thermal Processes for Plasmas of Arbitrary Beta. , 2018, , .		O
34	The Effects of Central jet on the Ar-on-D Double-Shell gas Puff Z-Pinch Loads on Sandia Zr for Pulsed Neutron Source. , 2017, , .		0
35	Effect of the axial magnetic field on a metallic gas-puff pinch implosion. Physics of Plasmas, 2016, 23, .	0.7	33
36	Indirect-drive ablative Richtmyer Meshkov node scaling. Journal of Physics: Conference Series, 2016, 717, 012034.	0.3	12

3

#	Article	IF	Citations
37	Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator. Physics of Plasmas, 2016, 23, .	0.7	8
38	A non-LTE analysis of high energy density Kr plasmas on Z and NIF. Physics of Plasmas, 2016, 23, 101208.	0.7	4
39	Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility. Physics of Plasmas, 2016, 23, .	0.7	27
40	Stability of stagnation via an expanding accretion shock wave. Physics of Plasmas, 2016, 23, .	0.7	9
41	Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch. Physical Review Letters, 2016, 117, 205001.	2.9	24
42	Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells. Physics of Plasmas, 2015, 22, .	0.7	45
43	Mitigation of Rayleigh-Taylor instability in high-energy-density plasmas. , 2015, , .		1
44	The effect of gradients at stagnation on K-shell x-ray line emission in high-current Ar gas-puff implosions. Physics of Plasmas, 2015, 22, 020706.	0.7	20
45	Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma. Physics of Plasmas, 2015, 22, .	0.7	28
46	Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research. Physics of Plasmas, $2014, 21, \ldots$	0.7	27
47	Hypervelocity impacts of microscopic dust grains for orbital debris remediation. , 2014, , .		O
48	Compact hohlraum configuration with parallel planar-wire-array x-ray sources at the 1.7-MA Zebra generator. Physical Review E, 2014, 90, 063101.	0.8	6
49	Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation physics. Physics of Plasmas, 2014, 21, .	0.7	18
50	Application of one-dimensional stagnation solutions to three-dimensional simulation of compact wire array in absence of radiation. Physics of Plasmas, 2014, 21, .	0.7	10
51	A Renewed Capability for Gas Puff Science on Sandia's Z Machine. IEEE Transactions on Plasma Science, 2014, 42, 1145-1152.	0.6	62
52	Perturbation theory and numerical modelling of weakly and moderately nonlinear dynamics of the incompressible Richtmyer–Meshkov instability. Journal of Fluid Mechanics, 2014, 751, 432-479.	1.4	32
53	Mitigation of Instabilities in a Z-Pinch Plasma by a Preembedded Axial Magnetic Field. IEEE Transactions on Plasma Science, 2014, 42, 2524-2525.	0.6	70
54	Impact ignition as a track to laser fusion. Nuclear Fusion, 2014, 54, 054007.	1.6	17

#	Article	IF	CITATIONS
55	Contrasting physics in wire array z pinch sources of 1-20 keV emission on the Z facility. Physics of Plasmas, 2014, 21, .	0.7	36
56	Magnetic flux and heat losses by diffusive, convective, and nernst effects in maglif-like plasma. , 2014, , .		0
57	Anisotropy of radiation emitted from planar wire arrays. Physics of Plasmas, 2013, 20, .	0.7	11
58	Developments in Direct Drive Laser Fusion. Fusion Science and Technology, 2013, 64, 194-200.	0.6	0
59	High Gain Direct Drive Target Designs and Supporting Experiments with KrF. Plasma and Fusion Research, 2013, 8, 3404042-3404042.	0.3	0
60	Exact self-similar solutions for the magnetized Noh Z pinch problem. Physics of Plasmas, 2012, 19, .	0.7	22
61	Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target. Physics of Plasmas, 2012, 19, .	0.7	9
62	Thermonuclear burn wave propagation across an ultrahigh magnetic field., 2012,,.		0
63	Observation of Strong Oscillations of Areal Mass in an Unsupported Shock Wave. Physical Review Letters, 2012, 109, 085001.	2.9	18
64	Analytical linear theory for the shock and re-shock of isotropic density inhomogeneities. Journal of Fluid Mechanics, 2012, 700, 214-245.	1.4	17
65	Producing Kiloelectronvolt L-Shell Plasmas on Zebra at UNR. IEEE Transactions on Plasma Science, 2012, 40, 3347-3353.	0.6	7
66	Effect of shock-generated turbulence on the Hugoniot jump conditions. Physical Review E, 2012, 85, 016301.	0.8	17
67	2D radiation MHD model assessment of initial argon gas distributions to be imploded on the Z machine. , 2011, , .		0
68	Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners. Physics of Plasmas, 2011, 18, .	0.7	104
69	Comparison of multi-dimensional MHD simulations against exact solutions for a stagnating Z pinch. , 2011, , .		O
70	Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic density field. Physical Review E, 2011, 83, 056320.	0.8	34
71	Observations of strong areal mass oscillations in a rippled target hit by a short pulse on the nike laser. , 2011, , .		1
72	Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1739-1768.	1.6	63

#	Article	lF	Citations
73	Stagnation dynamics of a ne gas puff z pinch., 2010,,.		O
74	High ion energies in Z pinches: Potential for ³ he fusion?., 2010,,.		0
7 5	Multidimensional dynamics and structures effects on the radiation and implosion physics of aluminum/magnesium nested wire arrays on the refurbished Z simulator. , 2010, , .		O
76	Neutron production in deuterium gas-puff implosions on the refurbished Z accelerator. , 2010, , .		O
77	Acceleration to high velocities and heating by impact using Nike KrF laser. Physics of Plasmas, 2010, 17, 056317.	0.7	36
78	Laser driven supersonic flow over a compressible foam surface on the Nike laser. Physics of Plasmas, 2010, 17, 056310.	0.7	7
79	Theory of High-Energy-Photon K-Shell Recombination Continuum Radiation From \$Z\$-Pinch Plasmas. IEEE Transactions on Plasma Science, 2010, 38, 618-625.	0.6	5
80	Stability of a Shock-Decelerated Ablation Front. Physical Review Letters, 2009, 103, 085002.	2.9	12
81	Experimental Evidence of Impact Ignition: 100-Fold Increase of Neutron Yield by Impactor Collision. Physical Review Letters, 2009, 102, 235002.	2.9	45
82	Production of cumulative jets by ablatively-driven implosion of hollow cones and wedges. Physics of Plasmas, 2008, 15, 050703.	0.7	11
83	Magnetostatic and magnetohydrodynamic modeling of planar wire arrays. Physics of Plasmas, 2008, 15, 052703.	0.7	23
84	Classical and ablative Richtmyer–Meshkov instability and other ICF-relevant plasma flows diagnosed with monochromatic x-ray imaging. Physica Scripta, 2008, T132, 014021.	1.2	10
85	Neutron production and implosion characteristics of a deuterium gas-puff Z pinch. Physics of Plasmas, 2007, 14, 022706.	0.7	90
86	One- and two-dimensional modeling of argon K-shell emission from gas-puff Z-pinch plasmas. Physics of Plasmas, 2007, 14, 063301.	0.7	16
87	Laser plasma instability experiments with KrF lasers. Physics of Plasmas, 2007, 14, 056316.	0.7	10
88	Nonlinear energy absorption of rare gas clusters in intense laser field. Physics of Plasmas, 2007, 14, 060701.	0.7	20
89	Shock front distortion and Richtmyer-Meshkov-type growth caused by a small preshock nonuniformity. Physics of Plasmas, 2007, 14, .	0.7	29
90	Deuterium gas-puff Z-pinch implosions on the Z accelerator. Physics of Plasmas, 2007, 14, 056309.	0.7	68

#	Article	IF	CITATIONS
91	Measurement of the \$sim\$0.1- to \$>\$ 10-keV Energy Distribution for an Argon Z-Pinch at the 15-MA Level. IEEE Transactions on Plasma Science, 2007, 35, 31-42.	0.6	8
92	Scaling of K-Shell Emission From \$Z\$ -Pinches: Z to ZR. IEEE Transactions on Plasma Science, 2007, 35, 582-591.	0.6	23
93	Perturbation evolution started by Richtmyer-Meshkov instability in planar laser targets. Physics of Plasmas, 2006, 13, 080703.	0.7	17
94	Multimode evolution of the ablative Richtmyer-Meshkov and Landau-Darrieus instability in laser imprint of planar targets. Physics of Plasmas, 2006, 13, 122703.	0.7	10
95	Neutron production from high-intensity laser–cluster induced fusion reactions. Plasma Physics and Controlled Fusion, 2006, 48, 1721-1739.	0.9	7
96	Tunable synchrotron radiation from high intensity laser–cluster interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4617-4625.	0.6	6
97	Fusion neutron yield from high intensity laser-cluster interaction. Physics of Plasmas, 2006, 13, 064501.	0.7	36
98	Implosion dynamics and radiative characteristics of a high yield structured gas puff load. Physics of Plasmas, 2006, 13, 082702.	0.7	37
99	Wire dynamics model of the implosion of nested and planar wire arrays. Physics of Plasmas, 2006, 13, 120701.	0.7	29
100	Modeling fluid instabilities in inertial confinement fusion hydrodynamics codes. Physics of Plasmas, 2005, 12, 056311.	0.7	16
101	Dynamics of a Xe cluster plasma produced by an intense ultrashort pulse KrF laser. Physics of Plasmas, 2005, 12, 063103.	0.7	45
102	Measurements of the Free-Bound Continuum for Argon Gas-Puff Implosions on the Decade Quad. IEEE International Conference on Plasma Science, 2005, , .	0.0	0
103	Dynamics of intense laser channel formation in an underdense plasma. Physics of Plasmas, 2005, 12, 123102.	0.7	31
104	Instability of a planar expansion wave. Physical Review E, 2005, 72, 046306.	0.8	12
105	Efficient Radiation Production in Long Implosions of Structured Gas-PuffZPinch Loads from Large Initial Radius. Physical Review Letters, 2005, 95, 105001.	2.9	58
106	The Effect of the Initial Density Profile on K-Shell Emission in Two-Dimensional Simulations of Argon Gas-Puff z Pinches. IEEE International Conference on Plasma Science, 2005, , .	0.0	0
107	Large-scale high-resolution simulations of high gain direct-drive inertial confinement fusion targets. Physics of Plasmas, 2004, 11, 2716-2722.	0.7	31
108	Laser imprint reduction with a shaping pulse, oscillatory Richtmyer–Meshkov to Rayleigh–Taylor transition and other coherent effects in plastic-foam targets. Physics of Plasmas, 2003, 10, 1897-1905.	0.7	23

#	Article	IF	CITATIONS
109	Laser–plasma simulations of astrophysical phenomena and novel applications to semiconductor annealing. Laser and Particle Beams, 2003, 21, 529-534.	0.4	5
110	Confinement and compression of magnetic flux by plasma shells. Physics of Plasmas, 2003, 10, 4435-4447.	0.7	7
111	Strong shock wave and areal mass oscillations associated with impulsive loading of planar laser targets. Physics of Plasmas, 2003, 10, 3270-3282.	0.7	13
112	Laser imprint reduction with a short shaping laser pulse incident upon a foam-plastic target. Physics of Plasmas, 2002, 9, 5050-5058.	0.7	43
113	Perfectly conducting incompressible fluid model of a wire array implosion. Physics of Plasmas, 2002, 9, 1366-1380.	0.7	45
114	Direct observation of mass oscillations due to ablative Richtmyer–Meshkov instability and feedout in planar plastic targets. Physics of Plasmas, 2002, 9, 2264-2276.	0.7	53
115	Growth of pellet imperfections and laser imprint in direct drive inertial confinement fusion targets. Physics of Plasmas, 2001, 8, 2287-2295.	0.7	27
116	Long-implosion plasma radiation sources using "solid-fill―nozzles. Physics of Plasmas, 2001, 8, 533-541.	0.7	52
117	An efficient tabulated collisional radiative equilibrium radiation transport model suitable for multidimensional hydrodynamics calculations. Physics of Plasmas, 2001, 8, 3480-3489.	0.7	74
118	Efficient argonK-shell radiation from a Z pinch at currents > 15 MA. Physics of Plasmas, 2001, 8, 3135-3138.	0.7	92
119	Direct Observation of Feedout-Related Mass Oscillations in Plastic Targets. Physical Review Letters, 2001, 87, 265002.	2.9	33
120	A role for electron viscosity in plasma shock heating. Physics of Plasmas, 2001, 8, 4524-4533.	0.7	12
121	Feedout and Richtmyer–Meshkov instability at large density difference. Physics of Plasmas, 2001, 8, 592-605.	0.7	36
122	High energy photon radiation from a Z-pinch plasma. Physics of Plasmas, 2001, 8, 4509-4517.	0.7	40
123	Direct Observation of Mass Oscillations Due to Ablative Richtmyer-Meshkov Instability in Plastic Targets. Physical Review Letters, 2001, 87, 265001.	2.9	68
124	Radiation modeling in dynamic Z-pinches. AIP Conference Proceedings, 2000, , .	0.3	0
125	Richtmyer–Meshkov-like instabilities and early-time perturbation growth in laser targets and Z-pinch loads. Physics of Plasmas, 2000, 7, 1662-1671.	0.7	67
126	Initial results for an argon Z pinch using a double-shell gas puff. Physics of Plasmas, 2000, 7, 4223.	0.7	35

#	Article	IF	Citations
127	Buoyant Magnetic Flux Tubes Enhance Radiation inZPinches. Physical Review Letters, 2000, 84, 3326-3329.	2.9	96
128	Valve and nozzle design for injecting a shell-on-shell gas puff load into azpinch. Review of Scientific Instruments, 2000, 71, 3080-3084.	0.6	69
129	Model of enhanced energy deposition in a Z-pinch plasma. Physics of Plasmas, 2000, 7, 3265-3277.	0.7	85
130	Study of radiative plasma structures in laser driven ablating plasmas. Physics of Plasmas, 1999, 6, 4015-4021.	0.7	10
131	Current Switching and Mass Interpenetration Offer Enhanced Power from Nested-ArrayZPinches. Physical Review Letters, 1999, 83, 4305-4308.	2.9	26
132	Richtmyer–Meshkov instability growth: experiment, simulation and theory. Journal of Fluid Mechanics, 1999, 389, 55-79.	1.4	215
133	Reduction of early-time perturbation growth in ablatively driven laser targets using tailored density profiles. Physics of Plasmas, 1999, 6, 3283-3295.	0.7	47
134	Shock propagation in a low-density foam filled with fluid. Physics of Plasmas, 1998, 5, 4357-4365.	0.7	34
135	Saturation of perturbation growth in ablatively driven planar laser targets. Physics of Plasmas, 1998, 5, 1491-1505.	0.7	54
136	Stabilized radiative Z-pinch loads with tailored density profiles. Physics of Plasmas, 1998, 5, 3377-3388.	0.7	69
137	Saturation of Laser Imprint on Ablatively Driven Plastic Targets. Physical Review Letters, 1997, 79, 1861-1864.	2.9	37
138	Fast commutation of high current in double wire array Z-pinch loads. Applied Physics Letters, 1997, 70, 170-172.	1.5	75
139	X-ray lasing in colliding plasmas. Physics of Plasmas, 1997, 4, 3718-3724.	0.7	7
140	Nonlinear Perturbation Theory of the Incompressible Richtmyer-Meshkov Instability. Physical Review Letters, 1996, 76, 3112-3115.	2.9	100
141	Analytic theory of Richtmyer–Meshkov instability for the case of reflected rarefaction wave. Physics of Fluids, 1996, 8, 1666-1679.	1.6	71
142	Suppression of Rayleigh-Taylor Instability inZ-Pinch Loads with Tailored Density Profiles. Physical Review Letters, 1996, 77, 853-856.	2.9	130
143	Implosions, equilibria, and stability of rotating, radiating Zâ€pinch plasmas. Physics of Plasmas, 1995, 2, 4513-4520.	0.7	13
144	Stability and radiative performance of structured Zâ€pinch loads imploded on highâ€current pulsed power generators. Physics of Plasmas, 1995, 2, 2765-2772.	0.7	78

#	Article	IF	CITATIONS
145	Suppression of Rayleigh–Taylor instability by the snowplow mechanism. Physics of Fluids B, 1993, 5, 1164-1172.	1.7	66
146	Experimental testing of thin-shell stable acceleration for ICF schemes with direct and indirect drive. Laser and Particle Beams, 1993, 11, 127-135.	0.4	1
147	Matter acceleration in laserâ€irradiated multifoil systems. Physics of Fluids B, 1992, 4, 2596-2604.	1.7	5
148	Rayleighâ€"Taylor instability of a plasmaâ€"vacuum boundary in the limit of a large Larmor radius. Physics of Fluids B, 1991, 3, 492-494.	1.7	8
149	Fluctuational transitions and related phenomena in a passive all-optical bistable system. Physical Review A, 1991, 44, 2439-2449.	1.0	7
150	Suppression of Rayleigh–Taylor and bulk convective instabilities in imploding plasma liners and pinches. Physics of Fluids B, 1990, 2, 1159-1169.	1.7	39
151	Plasma compression, heating and fusion in megagauss Z- \hat{l} , pinch systems. Plasma Physics and Controlled Fusion, 1990, 32, 319-326.	0.9	20
152	Comment on â€~â€~Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients''. Physical Review A, 1990, 42, 5031-5032.	1.0	4
153	Filamentation instabilities of dynamic Z pinches and theta pinches. Plasma Physics and Controlled Fusion, 1990, 32, 763-777.	0.9	17
154	Stability analysis of dynamic Z pinches and theta pinches. Physics of Fluids B, 1989, 1, 598-607.	1.7	37
155	Selfâ€similar spherical expansion of a laser plasma or of detonation products into a lowâ€density ambient gas. Physics of Fluids B, 1989, 1, 1271-1276.	1.7	14
156	Compression of ultrahigh magnetic fields in a gas-puff Z pinch. Physics of Fluids, 1988, 31, 2053.	1.4	76
157	Magnetic flux compression by dynamic plasmas. I. Subsonic self-similar compression of a magnetized plasma-filled liner. Physics of Fluids, 1988, 31, 3675.	1.4	20
158	Ultrahigh magnetic fields produced in a gasâ€puff Z pinch. Journal of Applied Physics, 1988, 64, 3831-3844.	1.1	67
159	Magnetic flux compression by dynamic plasmas. II. Supersonic self-similar solutions for magnetic cumulation. Physics of Fluids, 1988, 31, 3683.	1.4	10
160	Studies of thin foils acceleration by pulsed laser beam. Laser and Particle Beams, 1988, 6, 327-334.	0.4	5
161	Four-level logic element based on optical bistabiiity in an uncooled thin-film semiconductor interferometer. Soviet Journal of Quantum Electronics, 1987, 17, 1182-1183.	0.1	1
162	Gas–puff Z pinches with strong axial magnetic fields. Laser and Particle Beams, 1987, 5, 699-706.	0.4	6

#	Article	IF	CITATIONS
163	Feasibility of using optical and electron pumping to modulate CO2laser radiation in CdS and GaAs crystals. Soviet Journal of Quantum Electronics, 1985, 15, 1130-1132.	0.1	0
164	Modulation of argon laser radiation by broadening of an exciton level in a CdS crystal. Soviet Journal of Quantum Electronics, 1985, 15, 277-279.	0.1	0
165	Methods for producing ultrahigh magnetic fields. Applied Physics Letters, 1985, 46, 1042-1044.	1.5	71
166	Distribution function and diffusion of \hat{l} ±-particles in DT fusion plasma. Journal of Plasma Physics, 1984, 31, 369-380.	0.7	17
167	On the ignition of a self-sustained fusion reaction in a dense DT plasma. Journal of Plasma Physics, 1984, 31, 381-393.	0.7	21
168	On possible structures of normal ionizing shock waves in electromagnetic shock tubes. Plasma Physics, 1982, 24, 519-541.	0.9	0
169	The theory of ionizing shock waves in a magnetic field. Part 2. Transverse, normal and switch-off shock waves and the piston problem. Journal of Plasma Physics, 1981, 26, 55-81.	0.7	2
170	The theory of inoizing shock waves in a magnetic field. Part 1. Skew and oblique shock waves, boundary conditions and ionization stability. Journal of Plasma Physics, 1981, 26, 29-53.	0.7	3
171	Evolution of the initial ionizing discontinuity in a transverse magnetic field. Plasma Physics, 1980, 22, 317-330.	0.9	6
172	Shock waves in a transverse magnetic field. Uspekhi Fizicheskikh Nauk, 1979, 22, 843-859.	0.3	7
173	On possible structures of transverse ionizing shock waves. Plasma Physics, 1978, 20, 439-449.	0.9	5