
Riyoko Tamai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3727784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Etidronate down-regulates Toll-like receptor 2 ligand-induced chemokine production by inhibiting MyD88 expression and NF-κB activation. Immunopharmacology and Immunotoxicology, 2021, 43, 51-57.	1.1	3
2	Complete Genome Sequence of Veillonella nakazawae JCM 33966 T (=CCUG 74597 T), Isolated from the Oral Cavity of Japanese Children. Microbiology Resource Announcements, 2021, 10, .	0.3	2
3	Alendronate Augments Lipid A–Induced IL-1α Release via Activation of ASC but Not Caspase-11. Inflammation, 2021, 44, 2132-2141.	1.7	1
4	Veillonella nakazawae sp. nov., an anaerobic Gram-negative coccus isolated from the oral cavity of Japanese children. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	21
5	MPMBP down-regulates Toll-like receptor (TLR) 2 ligand-induced proinflammatory cytokine production by inhibiting NF-κB but not AP-1 activation. International Immunopharmacology, 2020, 79, 106085.	1.7	4
6	Heat-killed Candida albicans augments synthetic bacterial component-induced proinflammatory cytokine production. Folia Microbiologica, 2019, 64, 555-566.	1.1	5
7	Gastrointestinal colonisation and systemic spread of Candida albicans in mice treated with antibiotics and prednisolone. Microbial Pathogenesis, 2018, 117, 191-199.	1.3	23
8	Alendronate augments lipid A-induced IL-1β release and Smad3/NLRP3/ASC-dependent cell death. Life Sciences, 2018, 198, 8-17.	2.0	14
9	Extracellular galectin-1 enhances adhesion to and invasion of oral epithelial cells by <i>Porphyromonas gingivalis</i> . Canadian Journal of Microbiology, 2018, 64, 465-471.	0.8	6
10	Etidronate down-regulates Toll-like receptor (TLR) 2 ligand-induced proinflammatory cytokine production by inhibiting NF-κB activation. Pharmacological Reports, 2017, 69, 773-778.	1.5	9
11	Innate immunity to Candida albicans. Japanese Dental Science Review, 2015, 51, 59-64.	2.0	11
12	Beyond bone remodeling–emerging functions of osteoprotegerin in host defense and microbial infection. Integrative Molecular Medicine, 2015, 2, .	0.3	5
13	Candida albicans and Candida parapsilosis Rapidly Up-Regulate Galectin-3 Secretion by Human Gingival Epithelial Cells. Mycopathologia, 2014, 177, 75-79.	1.3	11
14	Amphotericin B Up-regulates Lipid A-induced IL-6 Production via Caspase-8. Journal of Dental Research, 2012, 91, 709-714.	2.5	8
15	Candida albicans enhances invasion of human gingival epithelial cells and gingival fibroblasts by Porphyromonas gingivalis. Microbial Pathogenesis, 2011, 51, 250-254.	1.3	66
16	Alendronate regulates cytokine production induced by lipid A through nuclear factor.κB and Smad3 activation in human gingival fibroblasts. Journal of Periodontal Research, 2011, 46, 13-20.	1.4	11
17	Effects of Nitrogen-containing Bisphosphonates on the Response of Human Peripheral Blood Mononuclear Cells and Gingival Fibroblasts to Bacterial Components. Journal of Oral Biosciences, 2010, 52, 268-274.	0.8	2
18	Alendronate augments interleukin-1β release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1. Toxicology and Applied Pharmacology, 2009, 235, 97-104.	1.3	35

RIYOKO TAMAI

#	Article	IF	CITATIONS
19	Porphyromonas gingivalis with either Tannerella forsythia or Treponema denticola induces synergistic IL-6 production by murine macrophage-like J774.1 cells. Anaerobe, 2009, 15, 87-90.	1.0	20
20	Mouse macrophages primed with al"endronate down-regulate monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α) production in response to Toll-like receptor (TLR) 2 and TLR4 agonist via Smad3 activation. International Immunopharmacology, 2009, 9, 1115-1121.	1.7	30
21	Chemical structure and immunobiological activity of Porphyromonas gingivalis lipid A. Frontiers in Bioscience - Landmark, 2007, 12, 3795.	3.0	87
22	Possible requirement of intercellular adhesion molecule-1 for invasion of gingival epithelial cells by <i>Treponema medium</i> . Canadian Journal of Microbiology, 2007, 53, 1232-1238.	0.8	7
23	Natural killer cell activities of synbiotic Lactobacillus casei ssp. casei in conjunction with dextran. Clinical and Experimental Immunology, 2006, 143, 103-109.	1.1	63
24	Correlation between chemical structure and biological activities of Porphyromonas gingivalis synthetic lipopeptide derivatives. Clinical and Experimental Immunology, 2006, 146, 159-168.	1.1	25
25	<i>Treponema medium</i> Glycoconjugate Inhibits Activation of Human Gingival Fibroblasts Stimulated with Phenol-Water Extracts of Periodontopathic Bacteria. Journal of Dental Research, 2005, 84, 456-461.	2.5	11
26	Requirement for Intercellular Adhesion Molecule 1 and Caveolae in Invasion of Human Oral Epithelial Cells by Porphyromonas gingivalis. Infection and Immunity, 2005, 73, 6290-6298.	1.0	50
27	Contrasting responses of human gingival and periodontal ligament fibroblasts to bacterial cell-surface components through the CD14/Toll-like receptor system. Oral Microbiology and Immunology, 2003, 18, 14-23.	2.8	88
28	Cell activation by monosaccharide lipid A analogues utilizing Toll-like receptor 4. Immunology, 2003, 110, 66-72.	2.0	54
29	Chemical structure and immunobiological activity of lipid A fromPrevotella intermediaATCC 25611 lipopolysaccharide. FEBS Letters, 2003, 543, 98-102.	1.3	51
30	Expression of IL-2 receptor β and γ chains by human gingival fibroblasts and up-regulation of adhesion to neutrophils in response to IL-2. Journal of Leukocyte Biology, 2003, 74, 352-359.	1.5	23
31	Synergistic effects of lipopolysaccharide and interferon-γ in inducing interleukin-8 production in human monocytic THP-1 cells is accompanied by up-regulation of CD14, Toll-like receptor 4, MD-2 and MyD88 expression. Journal of Endotoxin Research, 2003, 9, 145-153.	2.5	21
32	Human Gingival CD14+ Fibroblasts Primed with Gamma Interferon Increase Production of Interleukin-8 in Response to Lipopolysaccharide through Up-Regulation of Membrane CD14 and MyD88 mRNA Expression. Infection and Immunity, 2002, 70, 1272-1278.	1.0	40
33	Characterization of Lacrimal Gland Carbonic Anhydrase VI. Journal of Histochemistry and Cytochemistry, 2002, 50, 821-827.	1.3	40
34	Innate immune responses in oral mucosa. Journal of Endotoxin Research, 2002, 8, 465-468.	2.5	26
35	Contrasting responses of human gingival and colonic epithelial cells to lipopolysaccharides, lipoteichoic acids and peptidoglycans in the presence of soluble CD14. Medical Microbiology and Immunology, 2001, 189, 185-192.	2.6	59
36	Synergistic Effect of Muramyldipeptide with Lipopolysaccharide or Lipoteichoic Acid To Induce Inflammatory Cytokines in Human Monocytic Cells in Culture. Infection and Immunity, 2001, 69, 2045-2053.	1.0	193

#	Article	IF	CITATIONS
37	Monocytic Cell Activation by Nonendotoxic Glycoprotein from Prevotella intermedia ATCC 25611 Is Mediated by Toll-Like Receptor 2. Infection and Immunity, 2001, 69, 4951-4957.	1.0	33