
Marcel RejmÃ;nek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3727419/publications.pdf Version: 2024-02-01

MADCEL REIMÃ:NEK

#	Article	IF	CITATIONS
1	Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 2000, 6, 93-107.	4.1	2,724
2	What Attributes Make Some Plant Species More Invasive?. Ecology, 1996, 77, 1655-1661.	3.2	1,414
3	Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon, 2004, 53, 131-143.	0.7	978
4	Trees and shrubs as invasive alien species – a global review. Diversity and Distributions, 2011, 17, 788-809.	4.1	844
5	Invasive plants: approaches and predictions. Austral Ecology, 2000, 25, 497-506.	1.5	453
6	Toward a Causal Explanation of Plant Invasiveness: Seedling Growth and Lifeâ€History Strategies of 29 Pine (Pinus) Species. American Naturalist, 2002, 159, 396-419.	2.1	453
7	Conifers as invasive aliens: a global survey and predictive framework. Diversity and Distributions, 2004, 10, 321-331.	4.1	308
8	Trees and shrubs as invasive alien species – 2013 update of the global database. Diversity and Distributions, 2013, 19, 1093-1094.	4.1	281
9	Conflicting values: ecosystem services and invasive tree management. Biological Invasions, 2014, 16, 705-719.	2.4	230
10	EVOLUTION OF GENOME SIZE IN PINES (PINUS) AND ITS LIFE-HISTORY CORRELATES: SUPERTREE ANALYSES. Evolution; International Journal of Organic Evolution, 2004, 58, 1705-1729.	2.3	192
11	Plant invasions — the role of mutualisms. Biological Reviews, 2000, 75, 65-93.	10.4	165
12	Species Richness and Resistance to Invasions. Ecological Studies, 1996, , 153-172.	1.2	162
13	Contrasting ectomycorrhizal fungal communities on the roots of coâ€occurring oaks (<i>Quercus</i>) Tj ETQq1	1 0.7843 7.3	14 rgBT /Ove 158
14	Small rodents as significant dispersers of tree seeds in a Neotropical forest. Journal of Vegetation Science, 1999, 10, 165-174.	2.2	144
15	Directed seed dispersal towards areas with low conspecific tree density by a scatterâ€hoarding rodent. Ecology Letters, 2012, 15, 1423-1429.	6.4	116
16	Recent Anthropogenic Plant Extinctions Differ in Biodiversity Hotspots and Coldspots. Current Biology, 2019, 29, 2912-2918.e2.	3.9	109
17	Searching for phylogenetic pattern in biological invasions. Global Ecology and Biogeography, 2007, 17, 070909153804002-???.	5.8	93
18	Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biological Invasions, 2010, 12, 3913-3933.	2.4	93

Marcel RejmÃinek

#	Article	IF	CITATIONS
19	Native and naturalized range size in <i>Pinus</i> : relative importance of biogeography, introduction effort and species traits. Global Ecology and Biogeography, 2012, 21, 513-523.	5.8	70
20	Patterns of plant invasions in China: Taxonomic, biogeographic, climatic approaches and anthropogenic effects. Biological Invasions, 2010, 12, 2179-2206.	2.4	67
21	Using spaceâ€forâ€time substitution and time sequence approaches in invasion ecology. Freshwater Biology, 2012, 57, 2401-2410.	2.4	66
22	Plant invasions in Taiwan: Insights from the flora of casual and naturalized alien species. Diversity and Distributions, 2004, 10, 349-362.	4.1	64
23	A standardized set of metrics to assess and monitor tree invasions. Biological Invasions, 2014, 16, 535-551.	2.4	60
24	Invasive trees and shrubs: where do they come from and what we should expect in the future?. Biological Invasions, 2014, 16, 483-498.	2.4	55
25	Progress of Plant Succession on the Paricutin Volcano: 25 Years after Activity Ceased. American Midland Naturalist, 1982, 108, 194.	0.4	54
26	Assessing potential invasiveness of woody horticultural plant species using seedling growth rate traits. Journal of Applied Ecology, 2010, 47, 1320-1328.	4.0	47
27	No universal scale-dependent impacts of invasive species on native plant species richness. Biology Letters, 2014, 10, 20130939.	2.3	47
28	The species diversityÂ×Âfire severity relationship is humpâ€shaped in semiarid yellow pine and mixed conifer forests. Ecosphere, 2019, 10, e02882.	2.2	44
29	Resistance and resilience of subalpine wetlands with respect to prolonged drought. Folia Geobotanica, 1999, 34, 175-188.	0.9	42
30	A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm. Oecologia, 2010, 162, 951-963.	2.0	39
31	Spatial arrangement, density, and competition between barnyardgrass and tomato: I. Crop growth and yield. Weed Science, 2001, 49, 61-68.	1.5	36
32	A rapid survey of the invasive plant species in western Angola. African Journal of Ecology, 2017, 55, 56-69.	0.9	36
33	The numerical and functional responses of a granivorous rodent and the fate of Neotropical tree seeds. Ecology, 2009, 90, 1549-1563.	3.2	33
34	Relationships of phytogeography and diversity of tropical tree species with limestone topography in southern Belize. Journal of Biogeography, 2003, 30, 1669-1688.	3.0	30
35	Predicting invasiveness of exotic woody species using a traitsâ€based framework. Ecology, 2019, 100, e02797.	3.2	30
36	Herbarium records, actual distribution, and critical attributes of invasive plants: genus <i>Crotalaria</i> in Taiwan. Taxon, 2005, 54, 133-138.	0.7	29

Marcel RejmÃinek

#	Article	IF	CITATIONS
37	Spatial arrangement, density, and competition between barnyardgrass and tomato: II. Barnyardgrass growth and seed production. Weed Science, 2001, 49, 69-76.	1.5	28
38	Disentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns. Ecology and Evolution, 2016, 6, 1515-1526.	1.9	28
39	Predicting invaders. Trends in Ecology and Evolution, 2001, 16, 545-546.	8.7	26
40	Native fruit traits may mediate dispersal competition between native and non-native plants. NeoBiota, 0, 12, 1-24.	1.0	26
41	The total number of naturalized species can be a reliable predictor of the number of alien pest species. Diversity and Distributions, 2004, 10, 367-369.	4.1	23
42	Invasion Potential of Chinese Tallowtree (<i>Triadica sebifera</i>) in California's Central Valley. Invasive Plant Science and Management, 2009, 2, 386-395.	1.1	23
43	Origin matters. Environmental Conservation, 2017, 44, 97-99.	1.3	23
44	EVOLUTION OF GENOME SIZE IN PINES (PINUS) AND ITS LIFE-HISTORY CORRELATES: SUPERTREE ANALYSES. Evolution; International Journal of Organic Evolution, 2004, 58, 1705.	2.3	22
45	Â15N as an indicator of N2-fixation by cyanobacterial mats in tropical marshes. Biogeochemistry, 2004, 67, 353-368.	3.5	21
46	Vascular plant extinctions in California: A critical assessment. Diversity and Distributions, 2018, 24, 129-136.	4.1	20
47	Interference of bull thistle (Cirsiumvulgare) with growth of ponderosa pine (Pinusponderosa) seedlings in a forest plantation. Canadian Journal of Forest Research, 1993, 23, 1507-1513.	1.7	19
48	Title is missing!. Biodiversity and Conservation, 1999, 8, 1561-1583.	2.6	19
49	The number of vegetation types in <scp>E</scp> uropean countries: major determinants and extrapolation to other regions. Journal of Vegetation Science, 2014, 25, 863-872.	2.2	18
50	Mediterranean, invasive, woody species grow larger than their lessâ€invasive counterparts under potential global environmental change. American Journal of Botany, 2016, 103, 613-624.	1.7	18
51	Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid <i>Aesculus</i> species (Sapindaceae). Annals of Botany, 2017, 119, mcw261.	2.9	17
52	Combining efficient methods to detect spread of woody invaders in urban–rural matrix landscapes: an exploration using two species of Oleaceae. Journal of Applied Ecology, 2012, 49, 331-338.	4.0	15
53	Global trends in plant naturalization. Nature, 2015, 525, 39-40.	27.8	15
54	Vegetative Identification of Tropical Woody Plants: State of the Art and Annotated Bibliography1. Biotropica, 2001, 33, 214-228.	1.6	11

Marcel RejmÃinek

#	Article	IF	CITATIONS
55	Scale-dependent impacts of invasive species: a reply to Chase et al . (2015). Biology Letters, 2015, 11, 20150402.	2.3	11
56	Are invasive species a phylogenetically clustered subset of naturalized species in regional floras? A case study for flowering plants in China. Diversity and Distributions, 2022, 28, 2084-2093.	4.1	9
57	Experimental Seed Predator Removal Reveals Shifting Importance of Predation and Dispersal Limitation in Early Life History Stages of Tropical Forest Trees. Folia Geobotanica, 2013, 48, 415-435.	0.9	8
58	Extended leaf phenology: a secret of successful invaders?. Journal of Vegetation Science, 2013, 24, 975-976.	2.2	8
59	Change in disturbance regime facilitates invasion by Bellucia pentamera Naudin (Melastomataceae) at Gunung Palung National Park, Indonesia. Biological Invasions, 2017, 19, 1329-1337.	2.4	8
60	Towards simplification of phytosociological nomenclature. Folia Geobotanica Et Phytotaxonomica, 1997, 32, 419-420.	0.4	6
61	Limited Seed Dispersal May Explain Differences in Forest Colonization by the Japanese Raisin Tree (<i>Hovenia Dulcis</i> Thunb.), an Invasive Alien Tree in Southern Brazil. Tropical Conservation Science, 2015, 8, 610-622.	1.2	6
62	Multiple source pools for Galápagos plant species richness: a critical analysis of the line of sight connectivity index. Global Ecology and Biogeography, 2002, 11, 163-168.	5.8	2
63	Nine decades of major compositional changes in a Central European beech forest protected area. Plant Ecology, 2020, 221, 1005-1016.	1.6	2
64	Plant Invaders: The Threat to Natural Ecosystems BY QUENTIN C. B. CRONK AND JANICE L. FULLER xiv + 241 pp., 36 figs., 23 × 15.5 × 1 cm, ISBN 1 85383 781 4 paperback, GB£ 24.95, London, UK: Earthscan Publicati Ltd, 2001. Environmental Conservation, 2002, 29, 263-270.	onts3	0