Juul Limpens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/372724/publications.pdf

Version: 2024-02-01

66 papers 3,732 citations

32 h-index 59 g-index

75 all docs

75 docs citations

75 times ranked 4106 citing authors

#	Article	IF	CITATIONS
1	Above―to belowground carbon allocation in peatlands shifts with plant functional type and temperature [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 98-109.	1.9	4
2	Tundra vegetation change and impacts on permafrost. Nature Reviews Earth & Environment, 2022, 3, 68-84.	29.7	87
3	Extremely wet summer events enhance permafrost thaw for multiple years in Siberian tundra. Nature Communications, 2022, 13, 1556.	12.8	24
4	Can ash from smoldering fires increase peatland soil pH?. International Journal of Wildland Fire, 2022, 31, 607-620.	2.4	9
5	Shrubs and Degraded Permafrost Pave the Way for Tree Establishment in Subarctic Peatlands. Ecosystems, 2021, 24, 370-383.	3.4	13
6	Determinants of tree seedling establishment in alpine tundra. Journal of Vegetation Science, 2021, 32, e12948.	2.2	2
7	Environmental drivers of <i>Sphagnum</i> growth in peatlands across the Holarctic region. Journal of Ecology, 2021, 109, 417-431.	4.0	32
8	Monitoring Impact of Salt-Marsh Vegetation Characteristics on Sedimentation: an Outlook for Nature-Based Flood Protection. Wetlands, 2021, 41, 1.	1.5	5
9	Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Science of the Total Environment, 2021, 782, 146877.	8.0	19
10	Green beach vegetation dynamics explained by embryo dune development. Basic and Applied Ecology, 2021, 56, 45-57.	2.7	2
11	Dead wood diversity promotes fungal diversity. Oikos, 2021, 130, 2202-2216.	2.7	20
12	Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the twentieth century. Scientific Reports, 2021, 11, 24517.	3.3	5
13	Rapid Vegetation Succession and Coupled Permafrost Dynamics in Arctic Thaw Ponds in the Siberian Lowland Tundra. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005618.	3.0	20
14	Vascular plants affect properties and decomposition of moss-dominated peat, particularly at elevated temperatures. Biogeosciences, 2020, 17, 4797-4813.	3.3	16
15	Exploring near-surface ground ice distribution in patterned-ground tundra: correlations with topography, soil and vegetation. Plant and Soil, 2019, 444, 251-265.	3.7	9
16	Highâ€resolution peat volume change in a northern peatland: Spatial variability, main drivers, and impact on ecohydrology. Ecohydrology, 2019, 12, e2114.	2.4	14
17	Plant functional types and temperature control carbon input via roots in peatland soils. Plant and Soil, 2019, 438, 19-38.	3.7	20
18	Post-thaw variability in litter decomposition best explained by microtopography at an ice-rich permafrost peatland. Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	9

#	Article	IF	CITATIONS
19	UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development. Aeolian Research, 2018, 31, 50-61.	2.7	33
20	The Sphagnome Project: enabling ecological and evolutionary insights through a genusâ€level sequencing project. New Phytologist, 2018, 217, 16-25.	7.3	54
21	Depthâ€based differentiation in nitrogen uptake between graminoids and shrubs in an Arctic tundra plant community. Journal of Vegetation Science, 2018, 29, 34-41.	2.2	17
22	Environmental and taxonomic controls of carbon and oxygen stable isotope composition in & amp;lt;i>Sphagnum across broad climatic and geographic ranges. Biogeosciences, 2018, 15, 5189-5202.	3.3	25
23	Peatland vegetation composition and phenology drive the seasonal trajectory of maximum gross primary production. Scientific Reports, 2018, 8, 8012.	3.3	34
24	Including hydrological self-regulating processes in peatland models: Effects on peatmoss drought projections. Science of the Total Environment, 2017, 580, 1389-1400.	8.0	26
25	Phylogenetic or environmental control on the elemental and organo-chemical composition of Sphagnum mosses?. Plant and Soil, 2017, 417, 69-85.	3.7	26
26	A modification of the constant-head permeameter to measure saturated hydraulic conductivity of highly permeable media. MethodsX, 2017, 4, 134-142.	1.6	11
27	Forage plants of an Arcticâ€nesting herbivore show larger warming response in breeding than wintering grounds, potentially disrupting migration phenology. Ecology and Evolution, 2017, 7, 2652-2660.	1.9	29
28	Embryo dune development drivers: beach morphology, growing season precipitation, and storms. Earth Surface Processes and Landforms, 2017, 42, 1733-1744.	2.5	44
29	Does salt stress constrain spatial distribution of dune building grasses <i>Ammophila arenaria</i> and <i>Elytrichia juncea</i> on the beach?. Ecology and Evolution, 2017, 7, 7290-7303.	1.9	20
30	Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biology, 2017, 40, 2265-2278.	1.2	47
31	Above―and belowâ€ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. Journal of Ecology, 2017, 105, 947-957.	4.0	49
32	Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging. Biogeosciences, 2017, 14, 5533-5549.	3.3	36
33	Positive shrub–tree interactions facilitate woody encroachment in boreal peatlands. Journal of Ecology, 2015, 103, 58-66.	4.0	63
34	Rain events decrease boreal peatland net <scp>CO</scp> ₂ uptake through reduced light availability. Global Change Biology, 2015, 21, 2309-2320.	9.5	57
35	Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change, 2015, 5, 67-70.	18.8	147
36	How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment. PLoS ONE, 2014, 9, e91748.	2.5	23

#	Article	IF	CITATIONS
37	Do plant traits explain tree seedling survival in bogs?. Functional Ecology, 2014, 28, 283-290.	3.6	17
38	Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?. New Phytologist, 2014, 203, 70-80.	7.3	57
39	Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity in European peatlands. Environmental Pollution, 2014, 187, 73-80.	7.5	20
40	Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Global Change Biology, 2013, 19, 2240-2250.	9.5	70
41	Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses?. New Phytologist, 2012, 195, 408-418.	7.3	46
42	Climatic modifiers of the response to nitrogen deposition in peatâ€forming ⟨i⟩Sphagnum⟨/i⟩ mosses: a metaâ€analysis. New Phytologist, 2011, 191, 496-507.	7.3	117
43	Ecosystem responses to reduced and oxidised nitrogen inputs in European terrestrial habitats. Environmental Pollution, 2011, 159, 665-676.	7.5	132
44	Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry, 2011, 103, 45-57.	3.5	133
45	Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology, 2009, 10, 330-339.	2.7	124
46	Sphagnum re-introduction in degraded peatlands: The effects of aggregation, species identity and water table. Basic and Applied Ecology, 2009, 10, 697-706.	2.7	30
47	Interactive effects of water table and precipitation on net CO ₂ assimilation of three coâ€occurring ⟨i⟩Sphagnum⟨/i⟩ mosses differing in distribution above the water table. Global Change Biology, 2009, 15, 680-691.	9.5	104
48	Swift recovery of Sphagnum nutrient concentrations after excess supply. Oecologia, 2008, 157, 153-61.	2.0	21
49	Mixing ratio and species affect the use of substrateâ€derived CO ₂ by <i>Sphagnum</i> Journal of Vegetation Science, 2008, 19, 841-848.	2.2	5
50	The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos, 2008, 117, 1258-1268.	2.7	60
51	Peatlands and the Carbon Cycle. Bulletin of the Ecological Society of America, 2008, 89, 79-80.	0.2	0
52	Interspecific competition between Sphagnum mosses at different water tables. Functional Ecology, 2007, 21, 805-812.	3.6	46
53	Precipitation determines the persistence of hollow Sphagnum species on hummocks. Wetlands, 2007, 27, 979-986.	1.5	17
54	Effects of water level and temperature on performance of four Sphagnum mosses. Plant Ecology, 2007, 190, 97-107.	1.6	95

#	Article	lF	CITATIONS
55	The Nitrogen Cycle in Boreal Peatlands. , 2006, , 195-230.		69
56	Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19386-19389.	7.1	367
57	Nitrogen concentration and delta15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Global Change Biology, 2005, 11, 106-114.	9.5	164
58	Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition?. Journal of Applied Ecology, 2004, 41, 139-150.	4.0	145
59	Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 2004, 163, 609-616.	7.3	169
60	How Phosphorus Availability Affects the Impact of Nitrogen Deposition on Sphagnum and Vascular Plants in Bogs. Ecosystems, 2004, 7, 793-804.	3.4	128
61	Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	49
62	Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia, 2003, 135, 339-345.	2.0	118
63	The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos, 2003, 103, 59-68.	2.7	43
64	How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos, 2003, 103, 537-547.	2.7	128
65	N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytologist, 2003, 157, 339-347.	7.3	151
66	Expansion of Sphagnum fallaxin bogs: striking the balance between N and P availability. Journal of Bryology, 2003, 25, 83-90.	1,2	53