Vincent FerriÃ"res

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3727085/publications.pdf

Version: 2024-02-01

186254 276858 2,072 92 28 41 citations h-index g-index papers 110 110 110 1917 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent knowledge and innovations related to hexofuranosides: structure, synthesis and applications. Carbohydrate Research, 2008, 343, 1897-1923.	2.3	151
2	Molecular Interactions of Î ² -(1â†'3)-Glucans with Their Receptors. Molecules, 2015, 20, 9745-9766.	3.8	123
3	A new synthesis of O-glycosides from totally O-unprotected glycosyl donors. Tetrahedron Letters, 1995, 36, 2749-2752.	1.4	81
4	Glucan-like synthetic oligosaccharides: iterative synthesis of linear oligo- \hat{l}^2 -(1,3)-glucans and immunostimulatory effects. Glycobiology, 2005, 15, 393-407.	2.5	76
5	1,2,3-Triazoles and related glycoconjugates as new glycosidase inhibitors. Tetrahedron, 2005, 61, 9118-9128.	1.9	72
6	A convenient synthesis of alkyl d-glycofuranosiduronic acids and alkyl d-glycofuranosides from unprotected carbohydrates. Carbohydrate Research, 1998, 311, 25-35.	2.3	64
7	A Single UDP-galactofuranose Transporter Is Required for Galactofuranosylation in Aspergillus fumigatus. Journal of Biological Chemistry, 2009, 284, 33859-33868.	3.4	58
8	Synthetic UDP-Furanoses as Potent Inhibitors of Mycobacterial Galactan Biogenesis. Chemistry and Biology, 2010, 17, 1356-1366.	6.0	46
9	A General and Diastereoselective Synthesis of 1,2-cis-Hexofuranosides from 1,2-trans-Thiofuranosyl Donors. European Journal of Organic Chemistry, 2000, 2000, 1423-1431.	2.4	43
10	Natural glycans and glycoconjugates as immunomodulating agents. Natural Product Reports, 2011, 28, 937.	10.3	43
11	A new synthesis ofD-glycosiduronates from unprotectedD-uronic acids. Journal of the Chemical Society Chemical Communications, 1995, , 1391-1393.	2.0	41
12	Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates. Organic and Biomolecular Chemistry, 2015, 13, 8393-8404.	2.8	39
13	Amphitropic liquid-crystalline properties of some novel alkyl furanosides. Journal of Materials Chemistry, 1995, 5, 2209-2220.	6.7	38
14	Specific and non-specific enzymes for furanosyl-containing conjugates: biosynthesis, metabolism, and chemo-enzymatic synthesis. Carbohydrate Research, 2012, 356, 44-61.	2.3	38
15	General One-Step Synthesis of Free Hexofuranosyl 1-Phosphates Using Unprotected 1-Thioimidoyl Hexofuranosides. Journal of Organic Chemistry, 2005, 70, 847-855.	3.2	37
16	Recent Progress in the Field of $\$#946$;- $(1,3)$ -Glucans and New Applications. Mini-Reviews in Medicinal Chemistry, 2006, 6, 1341-1349.	2.4	36
17	A novel synthesis of d-galactofuranosyl, d-glucofuranosyl and d-mannofuranosyl 1-phosphates based on remote activation of new and free hexofuranosyl donors. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 3515-3518.	2.2	35
18	First Intramolecular Aglycon Delivery onto a D-Fucofuranosyl Entity for the Synthesis of α-D-Fucofuranose-Containing Disaccharides. European Journal of Organic Chemistry, 2003, 2003, 1285-1293.	2.4	34

#	Article	IF	Citations
19	Structural and biochemical characterization of the laminarinase <i>Zg</i> LamC _{GH16} from <i>Zobellia galactanivorans</i> suggests preferred recognition of branched laminarin. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 173-184.	2.5	34
20	An efficient route to per-O-acetylated hexofuranoses. Carbohydrate Research, 1998, 314, 79-83.	2.3	33
21	New Biocompatible Cationic Amphiphiles Derivative from Glycine Betaine: A Novel Family of Efficient Nonviral Gene Transfer Agents. Biochemical and Biophysical Research Communications, 1998, 251, 360-365.	2.1	33
22	Cationic lipids derived from glycine betaine promote efficient and non-toxic gene transfection in cultured hepatocytes. Journal of Gene Medicine, 2002, 4, 415-427.	2.8	33
23	Synthesis of the glycosyl phosphatidyl inositol anchor of rat brain Thy-1. Tetrahedron Letters, 1999, 40, 679-682.	1.4	32
24	Versatile Synthesis of Rare Nucleotide Furanoses. Organic Letters, 2007, 9, 5227-5230.	4.6	31
25	Enzyme-Catalyzed Synthesis of Furanosyl Nucleotides. Organic Letters, 2008, 10, 161-163.	4.6	31
26	Probing UDP-galactopyranose mutase binding pocket: A dramatic effect on substitution of the 6-position of UDP-galactofuranose. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 814-816.	2.2	31
27	New oligo- \hat{l}^2 -(1,3)-glucan derivatives as immunostimulating agents. Bioorganic and Medicinal Chemistry, 2010, 18, 348-357.	3.0	31
28	Enzymatic synthesis of oligo-d-galactofuranosides and l-arabinofuranosides: from molecular dynamics to immunological assays. Organic and Biomolecular Chemistry, 2010, 8, 2092.	2.8	31
29	Probing \hat{l}^2 -(1 \hat{a} †'3)-d-glucans interactions with recombinant human receptors using high-resolution NMR studies. Carbohydrate Research, 2011, 346, 1490-1494.	2.3	28
30	Semi-rational approach for converting a GH36 \hat{l} ±-glycosidase into an \hat{l} ±-transglycosidase. Glycobiology, 2015, 25, 420-427.	2.5	27
31	Two-Step Synthesis of Per-O-acetylfuranoses: Optimization and Rationalization. Journal of Organic Chemistry, 2012, 77, 1301-1307.	3.2	26
32	An ethoxylated surfactant enhances the penetration of the sulfated laminarin through leaf cuticle and stomata, leading to increased induced resistance against grapevine downy mildew. Physiologia Plantarum, 2016, 156, 338-350.	5.2	26
33	A step further in Peer Instruction: Using the Stepladder technique to improve learning. Computers and Education, 2015, 91, 1-13.	8.3	24
34	A new synthesis of the oligosaccharide domain of acarbose. Carbohydrate Research, 2003, 338, 2779-2792.	2.3	22
35	Engineering Ribonucleoside Triphosphate Specificity in a Thymidylyltransferase. Biochemistry, 2008, 47, 8719-8725.	2.5	22
36	Oligo- \hat{l}^2 -(1 \hat{a}^{\dagger} ' 3)-glucans: Impact of Thio-Bridges on Immunostimulating Activities and the Development of Cancer Stem Cells. Journal of Medicinal Chemistry, 2014, 57, 8280-8292.	6.4	22

#	Article	IF	CITATIONS
37	New 4-deoxy-(1→3)- \hat{l}^2 -d-glucan-based oligosaccharides and their immunostimulating potential. Carbohydrate Research, 2011, 346, 2213-2221.	2.3	21
38	Exploring the synthetic potency of the first furanothioglycoligase through original remote activation. Organic and Biomolecular Chemistry, 2011, 9, 8371.	2.8	21
39	Diastereospecific synthesis and amphiphilic properties of new alkyl \hat{l}^2 -D-fructopyranosides. Journal of the Chemical Society Perkin Transactions II, 1999, , 951-960.	0.9	20
40	A Chemoenzymatic Approach for the Synthesis of Unnatural Disaccharides Containing D-Galacto-or D-Fucofuranosides. European Journal of Organic Chemistry, 2005, 2005, 4860-4869.	2.4	20
41	Synthesis of galactofuranose-containing disaccharides using thioimidoyl-type donors. Carbohydrate Research, 2006, 341, 2759-2768.	2.3	19
42	Influencing the regioselectivity of lipase-catalyzed hydrolysis with [bmim]PF6. Tetrahedron Letters, 2009, 50, 2083-2085.	1.4	19
43	A NEW APPROACH TO A DISACCHARIDIC HAPTEN CONTAINING A GALACTOFURANOSYL ENTITY. Journal of Carbohydrate Chemistry, 2001, 20, 855-865.	1.1	17
44	Efficient gene transfer into human epithelial cell lines using glycosylated cationic carriers and neutral glycosylated co-lipids. Blood Cells, Molecules, and Diseases, 2004, 32, 271-282.	1.4	17
45	Epoxidation of allylic alcohols in aqueous solutions of non surfactant amphiphilic sugars. Chemical Communications, 2001, , 2460-2461.	4.1	16
46	FirstO-Glycosylation from Unprotected 1-Thioimidoyl Hexofuranosides Assisted by Divalent Cations. Journal of Organic Chemistry, 2007, 72, 5743-5747.	3.2	16
47	Stereoselective Chemoenzymatic Synthesis of UDPâ€1,2â€ <i>cis</i> à€furanoses from α,βâ€Furanosyl 1â€Phosp European Journal of Organic Chemistry, 2008, 2008, 5988-5994.	ohates. 2.4	15
48	Biological Properties of (1 â†' 3)-β- <scp>d</scp> -Glucan-Based Synthetic Oligosaccharides. Journal of Medicinal Food, 2011, 14, 369-376.	1.5	15
49	Studies of a furanoside as antimycobacterial agent loaded into a biodegradable PBAT/sodium caseinate support. Carbohydrate Research, 2011, 346, 1541-1545.	2.3	14
50	Identification of Three Elicitins and a Galactan-Based Complex Polysaccharide from a Concentrated Culture Filtrate of Phytophthora infestans Efficient against Pectobacterium atrosepticum. Molecules, 2014, 19, 15374-15390.	3.8	14
51	Distinguishing Galactoside Isomers with Mass Spectrometry and Gas-Phase Infrared Spectroscopy. Journal of the American Chemical Society, 2021, 143, 10509-10513.	13.7	14
52	Sulfur atom configuration of sulfinyl galactofuranosides determines different reactivities in glycosylation reactions. Tetrahedron Letters, 2000, 41, 5515-5519.	1.4	13
53	Double diastereoselection explains limitations in synthesizing mannose-containing \hat{l}^2 -(1,3)-glucans. Carbohydrate Research, 2010, 345, 1366-1370.	2.3	13
54	Alkyl Galactofuranosides Strongly Interact with Leishmania donovani Membrane and Provide Antileishmanial Activity. Antimicrobial Agents and Chemotherapy, 2014, 58, 2156-2166.	3.2	13

#	Article	IF	Citations
55	Spectroscopic diagnostic for the ring-size of carbohydrates in the gas phase: furanose and pyranose forms of GalNAc. Physical Chemistry Chemical Physics, 2019, 21, 12460-12467.	2.8	13
56	Identification and Quantification of Any Isoforms of Carbohydrates by 2D UV-MS Fingerprinting of Cold Ions. Analytical Chemistry, 2020, 92, 14624-14632.	6.5	13
57	Arabinogalactanâ€like Glycoproteins from <i>Ulva lactuca</i> (Chlorophyta) Show Unique Features Compared to Land Plants AGPs. Journal of Phycology, 2021, 57, 619-635.	2.3	13
58	Synthetic UDP-furanoses inhibit the growth of the parasite Leishmania. Carbohydrate Research, 2010, 345, 1299-1305.	2.3	11
59	From algal polysaccharides to cyclodextrins to stabilize a urease inhibitor. Carbohydrate Polymers, 2014, 112, 145-151.	10.2	11
60	Unexpected fluorous solvent effect on oxidation of 1-thioglycosides. Tetrahedron: Asymmetry, 2001, 12, 2389-2393.	1.8	10
61	A fully enzymatic esterification/transesterification sequence for the preparation of symmetrical and unsymmetrical trehalose diacyl conjugates. Green Chemistry, 2017, 19, 987-995.	9.0	10
62	Araf51 with improved transglycosylation activities: one engineered biocatalyst for one specific acceptor. Carbohydrate Research, 2015, 402, 50-55.	2.3	9
63	Formation of Amphiphilic Molecules from the Most Common Marine Polysaccharides, toward a Sustainable Alternative?. Molecules, 2021, 26, 4445.	3.8	9
64	The versatile enzyme Araf51 allowed efficient synthesis of rare pathogen-related \hat{l}^2 - <scp>d</scp> -galactofuranosyl-pyranoside disaccharides. Organic and Biomolecular Chemistry, 2014, 12, 3080-3089.	2.8	8
65	Synthesis and evaluation of 1,2-trans alkyl galactofuranoside mimetics as mycobacteriostatic agents. Organic and Biomolecular Chemistry, 2015, 13, 4940-4952.	2.8	8
66	Biocatalyzed synthesis of difuranosides and their ability to trigger production of TNF-α. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1550-1553.	2.2	8
67	Regioselective Galactofuranosylation for the Synthesis of Disaccharide Patterns Found in Pathogenic Microorganisms. Journal of Organic Chemistry, 2017, 82, 7114-7122.	3.2	8
68	Hydrophobized laminarans as new biocompatible anti-oomycete compounds for grapevine protection. Carbohydrate Polymers, 2019, 225, 115224.	10.2	8
69	Synthesis of an Exhaustive Library of Naturally Occurring Gal <i>f</i> han <i>p</i> han <i>han<i>han<i>han<i>han<i ha="" han<=""> Advanced Mass Spectrometry-Based IM-MS and IRMPD. Journal of Organic Chemistry, 2021, 86, 6390-6405.</i></i></i></i></i>	3.2	8
70	Pseudomonas aeruginosa resistance of monosaccharide-functionalized glass surfaces. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110383.	5.0	7
71	Synthesis of 4-Methylumbellifer-7-yl-alpha-D-Mannopyranoside: An Introduction to Modern Glycosylation Reactions. Journal of Chemical Education, 2002, 79, 1353.	2.3	5
72	Thioimidoyl furanosides as first inhibitors of the \hat{l} ±-l-arabinofuranosidase AbfD3. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 434-438.	2.2	5

#	Article	IF	Citations
73	Chapter 19. How recent knowledge on furano-specific enzymes has renewed interest for the synthesis of glycofuranosyl-containing conjugates. Carbohydrate Chemistry, 2014, , 401-417.	0.3	5
74	Direct access to new \hat{l}^2 -d-galactofuranoconjugates: application to the synthesis of galactofuranosyl-l-cysteine and l-serine. Tetrahedron Letters, 2011, 52, 1121-1123.	1.4	4
75	Galactofuranosidase from JHA 19 Streptomyces sp.: subcloning and biochemical characterization. Carbohydrate Research, 2019, 480, 35-41.	2.3	4
76	Saponin contents in the starfish Echinaster sepositus: Chemical characterization, qualitative and quantitative distribution. Biochemical Systematics and Ecology, 2021, 96, 104262.	1.3	4
77	Regioselective glycosylation: What's new?. Carbohydrate Chemistry, 2017, , 104-134.	0.3	4
78	In vitro and in vivo immunomodulatory properties of octyl- \hat{l}^2 -d-galactofuranoside during Leishmania donovani infection. Parasites and Vectors, 2019, 12, 600.	2.5	3
79	6-Deoxy-6-fluoro galactofuranosides: regioselective glycosylation, unexpected reactivity, and anti-leishmanial activity. Organic and Biomolecular Chemistry, 2020, 18, 1462-1475.	2.8	3
80	Impact of glycosylation on physico–chemical and biological properties of nitrification inhibitors. Tetrahedron, 2012, 68, 7095-7102.	1.9	2
81	Characterization of biodegradable poly(butylene adipate-co-terephtalate)/sodium caseinate films loaded with an alkyl furanoside as antimicrobial agent. Journal of Materials Science, 2012, 47, 5806-5814.	3.7	2
82	Environmentally benign glycosylation of aryl pyranosides and aryl/alkyl furanosides demonstrating the versatility of thermostable CGTase from Thermoanaerobacterium sp Green Chemistry, 2014, 16, 3803-3809.	9.0	2
83	Efficient isomerization of methyl arabinofuranosides into corresponding arabinopyranosides in presence of pyridine. Carbohydrate Research, 2016, 433, 63-66.	2.3	2
84	\hat{l}^2 -(1â†'3)-Glucan-mannitol conjugates: scope and amazing results. Annals of Translational Medicine, 2014, 2, 12.	1.7	2
85	Synthesis and biological properties of galactofuranosyl-containing fluorescent dyes. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 152-155.	2.2	1
86	Benzyl 4,6-di-O-acetyl-2-O-benzoyl-Î ² -D-glucopyranoside. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2286-o2288.	0.2	0
87	Modulation of the Activity and Regioselectivity of a Glycosidase: Development of a Convenient Tool for the Synthesis of Specific Disaccharides. Molecules, 2021, 26, 5445.	3.8	0
88	STUDY OF GLYCOFURANOSYL TRANSFERASES. A GENERAL SYNTHESIS OF SUITABLE HEXOFURANOSYL DONORS. , 2002, , .		0
89	4-Nitrophenyl α-L-rhamnopyranoside hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o379-o379.	0.2	0
90	Chemo-enzymatic synthesis of an original arabinofuranosyl cluster: optimization of the enzymatic conditions. Arkivoc, 2013, 2013, 123-132.	0.5	0

#	Article	IF	CITATIONS
91	Chemical Synthesis of Oligo-(1â†'3)-β-D-Glucans. , 2013, , 83-101.		O
92	Contribution of Biocatalysis to the Synthesis of \hat{l}^2 -(1,3)-Glucans. , 2013, , 102-111.		0