Anthony Wynshaw-Boris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3726775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adipocyte-specific deletion of zinc finger protein 407 results in lipodystrophy and insulin resistance in mice. Molecular and Cellular Endocrinology, 2021, 521, 111109.	3.2	4
2	EDITORIAL: â€~An Improbable Fifteen Years as Executive Editor'. Human Molecular Genetics, 2021, 30, 1-2.	2.9	0
3	Myeloid Krüppel-like factor 2 is a critical regulator of metabolic inflammation. Nature Communications, 2020, 11, 5872.	12.8	18
4	Philip Leder, MD, 1934–2020, In Memoriam. American Journal of Human Genetics, 2020, 106, 731-733.	6.2	0
5	Deletion of the Dishevelled family of genes disrupts anterior-posterior axis specification and selectively prevents mesoderm differentiation. Developmental Biology, 2020, 464, 161-175.	2.0	8
6	Enhanced homologous recombination by the modulation of targeting vector ends. Scientific Reports, 2020, 10, 2518.	3.3	7
7	LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. ELife, 2020, 9, .	6.0	6
8	Single-Cell Heterogeneity Analysis and CRISPR Screen Identify Key β-Cell-Specific Disease Genes. Cell Reports, 2019, 26, 3132-3144.e7.	6.4	90
9	Life-threatening presentations of propionic acidemia due to the Amish PCCB founder variant. Molecular Genetics and Metabolism Reports, 2019, 21, 100537.	1.1	4
10	Distinct roles of resident and nonresident macrophages in nonischemic cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4661-E4669.	7.1	134
11	Modeling Non-Syndromic Autism with Human-Induced Pluripotent Stem Cells. Neuropsychopharmacology, 2018, 43, 219-220.	5.4	3
12	Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Research and Therapy, 2018, 9, 67.	5.5	25
13	Developmental Alcohol Exposure Impairs Activity-Dependent <i>S-</i> Nitrosylation of NDEL1 for Neuronal Maturation. Cerebral Cortex, 2017, 27, 3918-3929.	2.9	9
14	Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular Psychiatry, 2017, 22, 820-835.	7.9	349
15	Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell, 2017, 20, 435-449.e4.	11.1	463
16	Concise Review: Induced Pluripotent Stem Cell Models for Neuropsychiatric Diseases. Stem Cells Translational Medicine, 2017, 6, 2062-2070.	3.3	19
17	A Unique ISR Program Determines Cellular Responses to Chronic Stress. Molecular Cell, 2017, 68, 885-900.e6.	9.7	135
18	A novel system for correcting large-scale chromosomal aberrations: ring chromosome correction via reprogramming into induced pluripotent stem cell (iPSC). Chromosoma, 2017, 126, 457-463.	2.2	7

#	Article	IF	CITATIONS
19	Transcriptome analysis reveals rod/cone photoreceptor specific signatures across mammalian retinas. Human Molecular Genetics, 2016, 25, ddw268.	2.9	36
20	Chromosome therapy: Potential strategies for the correction of severe chromosome aberrations. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2016, 172, 422-430.	1.6	18
21	Mapping the dynamic expression of Wnt11 and the lineage contribution of Wnt11-expressing cells during early mouse development. Developmental Biology, 2015, 398, 177-192.	2.0	23
22	Chromosome therapy. Nucleus, 2014, 5, 391-395.	2.2	17
23	LIS1 controls mitosis and mitotic spindle organization via the LIS1–NDEL1–dynein complex. Human Molecular Genetics, 2014, 23, 449-466.	2.9	83
24	Patches of Disorganization in the Neocortex of Children with Autism. New England Journal of Medicine, 2014, 370, 1209-1219.	27.0	601
25	Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature, 2014, 507, 99-103.	27.8	75
26	14-3-3ε and ζ Regulate Neurogenesis and Differentiation of Neuronal Progenitor Cells in the Developing Brain. Journal of Neuroscience, 2014, 34, 12168-12181.	3.6	102
27	Loss of Dishevelleds Disrupts Planar Polarity in Ependymal Motile Cilia and Results in Hydrocephalus. Neuron, 2014, 83, 558-571.	8.1	121
28	Cytoskeleton in action: lissencephaly, a neuronal migration disorder. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 229-245.	5.9	101
29	Spindle Orientation: Timing Is Everything. Neuron, 2013, 79, 211-213.	8.1	1
30	Phosphorylation of Dishevelled by Protein Kinase RIPK4 Regulates Wnt Signaling. Science, 2013, 339, 1441-1445.	12.6	93
31	ALLN rescues an in vitro excitatory synaptic transmission deficit in Lis1 mutant mice. Journal of Neurophysiology, 2013, 109, 429-436.	1.8	9
32	Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages. PLoS Genetics, 2012, 8, e1002592.	3.5	179
33	Disheveled mediated planar cell polarity signaling is required in the second heart field lineage for outflow tract morphogenesis. Developmental Biology, 2012, 370, 135-144.	2.0	68
34	Activation of Aurora-A Is Essential for Neuronal Migration via Modulation of Microtubule Organization. Journal of Neuroscience, 2012, 32, 11050-11066.	3.6	24
35	14-3-3ε Plays a Role in Cardiac Ventricular Compaction by Regulating the Cardiomyocyte Cell Cycle. Molecular and Cellular Biology, 2012, 32, 5089-5102	2.3	44
36	Dishevelled. Current Topics in Developmental Biology, 2012, 101, 213-235.	2.2	49

#	Article	IF	CITATIONS
37	Preprocessing and Quality Control Strategies for Illumina DASL Assay-Based Brain Gene Expression Studies with Semi-Degraded Samples. Frontiers in Genetics, 2012, 3, 11.	2.3	22
38	Wnt Signaling in Mammalian Development: Lessons from Mouse Genetics. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007963-a007963.	5.5	99
39	Charles Joseph Epstein, M.D., 1933–2011, In Memoriam. American Journal of Human Genetics, 2011, 88, 684-688.	6.2	Ο
40	Global Developmental Gene Expression and Pathway Analysis of Normal Brain Development and Mouse Models of Human Neuronal Migration Defects. PLoS Genetics, 2011, 7, e1001331.	3.5	45
41	Therapeutic intervention for genetic disease by the augmented recycling of target proteins. Future Neurology, 2010, 5, 5-8.	0.5	Ο
42	mNUDC is required for plus-end-directed transport of cytoplasmic dynein and dynactins by kinesin-1. EMBO Journal, 2010, 29, 517-531.	7.8	56
43	Planar polarization of node cells determines the rotational axis of node cilia. Nature Cell Biology, 2010, 12, 170-176.	10.3	190
44	Novel Embryonic Neuronal Migration and Proliferation Defects in <i>Dcx</i> Mutant Mice Are Exacerbated by <i>Lis1</i> Reduction. Journal of Neuroscience, 2010, 30, 3002-3012.	3.6	80
45	The essential role of LIS1, NDEL1 and Aurora-A in polarity formation and microtubule organization during neurogensis. Cell Adhesion and Migration, 2010, 4, 180-184.	2.7	32
46	A novel strategy for therapeutic intervention for the genetic disease: Preventing proteolytic cleavage using small chemical compound. International Journal of Biochemistry and Cell Biology, 2010, 42, 1401-1407.	2.8	8
47	Genetic Mosaic Dissection of Lis1 and Ndel1 in Neuronal Migration. Neuron, 2010, 68, 695-709.	8.1	215
48	Lissencephaly: Mechanistic insights from animal models and potential therapeutic strategies. Seminars in Cell and Developmental Biology, 2010, 21, 823-830.	5.0	79
49	Distinct Dose-Dependent Cortical Neuronal Migration and Neurite Extension Defects in <i>Lis1</i> and <i>Ndel1</i> Mutant Mice. Journal of Neuroscience, 2009, 29, 15520-15530.	3.6	99
50	A new way of looking at neurogenesis at the apical surface. EMBO Reports, 2009, 10, 457-458.	4.5	0
51	An essential role of the aPKC–Aurora A–NDEL1 pathway in neurite elongation by modulation of microtubule dynamics. Nature Cell Biology, 2009, 11, 1057-1068.	10.3	111
52	Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly. Nature Medicine, 2009, 15, 1202-1207.	30.7	67
53	Elongator Bridges Tubulin Acetylation and Neuronal Migration. Cell, 2009, 136, 393-394.	28.9	11
54	Human genetics: conceptual and practical advances in the post-genome era. Current Opinion in Genetics and Development, 2009, 19, 193-195.	3.3	0

#	Article	IF	CITATIONS
55	LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. EMBO Journal, 2008, 27, 2471-2483.	7.8	174
56	Neuroepithelial Stem Cell Proliferation Requires LIS1 for Precise Spindle Orientation and Symmetric Division. Cell, 2008, 132, 474-486.	28.9	254
57	Protein phosphatase 4 catalytic subunit regulates Cdk1 activity and microtubule organization via NDEL1 dephosphorylation. Journal of Cell Biology, 2008, 180, 1133-1147.	5.2	69
58	Genetic Enhancement of the Lis1+/– Phenotype by a Heterozygous Mutation in the Adenomatous Polyposis Coli Gene. Developmental Neuroscience, 2008, 30, 157-170.	2.0	8
59	Identification of YWHAE, a gene encoding 14-3-3epsilon, as a possible susceptibility gene for schizophrenia. Human Molecular Genetics, 2008, 17, 3212-3222.	2.9	97
60	Murine Dishevelled 3 Functions in Redundant Pathways with Dishevelled 1 and 2 in Normal Cardiac Outflow Tract, Cochlea, and Neural Tube Development. PLoS Genetics, 2008, 4, e1000259.	3.5	262
61	Lis1–Nde1-dependent neuronal fate control determines cerebral cortical size and lamination. Human Molecular Genetics, 2008, 17, 2441-2455.	2.9	73
62	N -Glycolylneuraminic Acid Deficiency in Mice: Implications for Human Biology and Evolution. Molecular and Cellular Biology, 2007, 27, 4340-4346.	2.3	180
63	NDEL1 Phosphorylation by Aurora-A Kinase Is Essential for Centrosomal Maturation, Separation, and TACC3 Recruitment. Molecular and Cellular Biology, 2007, 27, 352-367.	2.3	128
64	JNK1 in Hematopoietically Derived Cells Contributes to Diet-Induced Inflammation and Insulin Resistance without Affecting Obesity. Cell Metabolism, 2007, 6, 386-397.	16.2	460
65	The Pafah1b Complex Interacts with the Reelin Receptor VLDLR. PLoS ONE, 2007, 2, e252.	2.5	57
66	Lost in mitotic translation. Nature, 2007, 446, 274-275.	27.8	3
67	Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family–mediated transcriptional activation of TGFI²2. Nature Genetics, 2007, 39, 1225-1234.	21.4	155
68	Inborn Errors of Development: Disruption of Pathways Critical for Normal Development. Pediatric Clinics of North America, 2006, 53, 855-871.	1.8	2
69	Pten and the Brain: Sizing up Social Interaction. Neuron, 2006, 50, 343-345.	8.1	15
70	Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nature Neuroscience, 2006, 9, 50-57.	14.8	154
71	Behavior of mice with mutations in the conserved region deleted in velocardiofacial/DiGeorge syndrome. Neurogenetics, 2006, 7, 247-257.	1.4	70
72	Effect of the reduction of superoxide dismutase 1 and 2 or treatment with α-tocopherol on tumorigenesis in Atm-deficient mice. Free Radical Biology and Medicine, 2006, 41, 590-600.	2.9	27

#	Article	IF	CITATIONS
73	Analysis of non-radial interneuron migration dynamics and its disruption inLis1+/â^' mice. Journal of Comparative Neurology, 2006, 496, 847-858.	1.6	32
74	Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development (Cambridge), 2006, 133, 1767-1778.	2.5	309
75	Inflammatory Disease and Lymphomagenesis Caused by Deletion of the Myc Antagonist Mnt in T Cells. Molecular and Cellular Biology, 2006, 26, 2080-2092.	2.3	29
76	Mnt-Deficient Mammary Glands Exhibit Impaired Involution and Tumors with Characteristics of Myc Overexpression. Cancer Research, 2006, 66, 5565-5573.	0.9	37
77	Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nature Genetics, 2005, 37, 980-985.	21.4	278
78	IKK-β links inflammation to obesity-induced insulin resistance. Nature Medicine, 2005, 11, 191-198.	30.7	1,591
79	Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nature Neuroscience, 2005, 8, 34-42.	14.8	435
80	Atm Heterozygosity Cooperates with Loss of Brca1 to Increase the Severity of Mammary Gland Cancer and Reduce Ductal Branching. Cancer Research, 2005, 65, 8736-8746.	0.9	21
81	Complete Loss of <i>Ndel1</i> Results in Neuronal Migration Defects and Early Embryonic Lethality. Molecular and Cellular Biology, 2005, 25, 7812-7827.	2.3	149
82	Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration. Human Molecular Genetics, 2005, 14, 3113-3128.	2.9	91
83	Mnt–Max to Myc–Max complex switching regulates cell cycle entry. Journal of Cell Biology, 2005, 169, 405-413.	5.2	69
84	Aberrant recombination involving the granzyme locus occurs in Atmâ^'/â^' T-cell lymphomas. Human Molecular Genetics, 2005, 14, 2671-2684.	2.9	10
85	Role of 14–3–3 Proteins in Eukaryotic Signaling and Development. Current Topics in Developmental Biology, 2005, 68, 281-315.	2.2	140
86	Cancer chemoprevention by the antioxidant tempol acts partially via the p53 tumor suppressor. Human Molecular Genetics, 2005, 14, 1699-1708.	2.9	49
87	Loss of the Max-interacting protein Mnt in mice results in decreased viability, defective embryonic growth and craniofacial defects: relevance to Miller-Dieker syndrome. Human Molecular Genetics, 2004, 13, 1057-1067.	2.9	51
88	Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice. Human Molecular Genetics, 2004, 13, 1793-1802.	2.9	128
89	Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. Journal of Cell Biology, 2004, 165, 709-721.	5.2	390
90	Immunoglobulin Class Switch Recombination Is Impaired in Atm-deficient Mice. Journal of Experimental Medicine, 2004, 200, 1111-1121.	8.5	152

#	Article	IF	CITATIONS
91	Evidence of Mnt-Myc Antagonism Revealed by Mnt Gene Deletion. Cell Cycle, 2004, 3, 95-97.	2.6	13
92	Carbonic Anhydrase III Is Not Required in the Mouse for Normal Growth, Development, and Life Span. Molecular and Cellular Biology, 2004, 24, 9942-9947.	2.3	64
93	Sialyltransferase ST8Sia-II Assembles a Subset of Polysialic Acid That Directs Hippocampal Axonal Targeting and Promotes Fear Behavior. Journal of Biological Chemistry, 2004, 279, 32603-32613.	3.4	166
94	A new role for expressed pseudogenes as ncRNA: regulation of mRNA stability of its homologous coding gene. Journal of Molecular Medicine, 2004, 82, 414-22.	3.9	63
95	The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation. Current Opinion in Genetics and Development, 2004, 14, 533-539.	3.3	116
96	Lis1 Is Necessary for Normal Non-Radial Migration of Inhibitory Interneurons. American Journal of Pathology, 2004, 165, 775-784.	3.8	90
97	Involvement of platelet-activating factor and LIS1 in neuronal migration. European Journal of Neuroscience, 2003, 18, 563-570.	2.6	49
98	An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature, 2003, 423, 91-96.	27.8	369
99	14-3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller–Dieker syndrome. Nature Genetics, 2003, 34, 274-285.	21.4	374
100	Interaction of reelin signaling and Lis1 in brain development. Nature Genetics, 2003, 35, 270-276.	21.4	199
101	Deletion of Mnt leads to disrupted cell cycle control and tumorigenesis. EMBO Journal, 2003, 22, 4584-4596.	7.8	78
102	Refinement of a 400-kb Critical Region Allows Genotypic Differentiation between Isolated Lissencephaly, Miller-Dieker Syndrome, and Other Phenotypes Secondary to Deletions of 17p13.3. American Journal of Human Genetics, 2003, 72, 918-930.	6.2	215
103	Miller-Dieker Syndrome: Analysis of a Human Contiguous Gene Syndrome in the Mouse. American Journal of Human Genetics, 2003, 73, 475-488.	6.2	36
104	Regulated subset of G ₁ growth-control genes in response to derepression by the Wnt pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3245-3250.	7.1	139
105	Previously uncharacterized roles of platelet-activating factor acetylhydrolase 1b complex in mouse spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7189-7194.	7.1	72
106	An inbred 129SvEv GFPCre transgenic mouse that deletes loxP-flanked genes in all tissues. Nucleic Acids Research, 2003, 31, 57e-57.	14.5	15
107	Human Disease Genes and Their Cloned Mouse Orthologs: Exploration of the FANTOM2 cDNA Sequence Data Set. Genome Research, 2003, 13, 1496-1500.	5.5	7
108	Multiple Dose-Dependent Effects of <i>Lis1</i> on Cerebral Cortical Development. Journal of Neuroscience, 2003, 23, 1719-1729.	3.6	167

#	Article	IF	CITATIONS
109	Disregulated RhoGTPases and Actin Cytoskeleton Contribute to the Migration Defect in Lis1-Deficient Neurons. Journal of Neuroscience, 2003, 23, 8673-8681.	3.6	109
110	Targeted Mutagenesis of the Hira Gene Results in Gastrulation Defects and Patterning Abnormalities of Mesoendodermal Derivatives Prior to Early Embryonic Lethality. Molecular and Cellular Biology, 2002, 22, 2318-2328.	2.3	126
111	Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development (Cambridge), 2002, 129, 5827-5838.	2.5	385
112	RAC-Mediated V(D)J Recombination Is Not Essential for Tumorigenesis in Atm -Deficient Mice. Molecular and Cellular Biology, 2002, 22, 3174-3177.	2.3	39
113	Identification of a Wnt/Dvl/β-Catenin → Pitx2 Pathway Mediating Cell-Type-Specific Proliferation during Development. Cell, 2002, 111, 673-685.	28.9	519
114	Regulation of AChR Clustering by Dishevelled Interacting with MuSK and PAK1. Neuron, 2002, 35, 489-505.	8.1	221
115	Doublecortin Is Required in Mice for Lamination of the Hippocampus But Not the Neocortex. Journal of Neuroscience, 2002, 22, 7548-7557.	3.6	294
116	Life is a journey: a genetic look at neocortical development. Nature Reviews Genetics, 2002, 3, 342-355.	16.3	325
117	Targeted Mutagenesis of Smad1 Reveals an Essential Role in Chorioallantoic Fusion. Developmental Biology, 2001, 240, 157-167.	2.0	169
118	Nucleotide sequence and structure of the mouse carbonic anhydrase III gene. Gene, 2001, 265, 37-44.	2.2	7
119	TBX1 Is Responsible for Cardiovascular Defects in Velo-Cardio-Facial/DiGeorge Syndrome. Cell, 2001, 104, 619-629.	28.9	884
120	Direct removal in the mouse of a floxed neo gene from a three-loxp conditional knockout allele by two novel approaches. Genesis, 2001, 30, 1-6.	1.6	88
121	Early Embryonic Lethality in PARP-1 Atm Double-Mutant Mice Suggests a Functional Synergy in Cell Proliferation during Development. Molecular and Cellular Biology, 2001, 21, 1828-1832.	2.3	91
122	Extra-chromosomal telomeric DNA in cells from Atm-/- mice and patients with ataxia-telangiectasia. Human Molecular Genetics, 2001, 10, 519-528.	2.9	108
123	Heterozygosity for a mutation in Brca1 or Atm does not increase susceptibility to ENU-induced mammary tumors in ApcMin/+ mice. Carcinogenesis, 2001, 22, 343-346.	2.8	9
124	Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biology, 2000, 2, 767-775.	10.3	353
125	Hippocampal Abnormalities and Enhanced Excitability in a Murine Model of Human Lissencephaly. Journal of Neuroscience, 2000, 20, 2439-2450.	3.6	132
126	Bcl-x and Bax Regulate Mouse Primordial Germ Cell Survival and Apoptosis during Embryogenesis. Molecular Endocrinology, 2000, 14, 1038-1052.	3.7	215

ANTHONY WYNSHAW-BORIS

#	Article	IF	CITATIONS
127	A LIS1/NUDEL/Cytoplasmic Dynein Heavy Chain Complex in the Developing and Adult Nervous System. Neuron, 2000, 28, 681-696.	8.1	475
128	Poly(ADP-ribose) polymerase activity is not affected in ataxia telangiectasia cells and knockout mice. Carcinogenesis, 1999, 20, 177-180.	2.8	13
129	Impaired Learning and Motor Behavior in Heterozygous <i>Pafah1b1 (Lis1)</i> Mutant Mice. Learning and Memory, 1999, 6, 521-537.	1.3	84
130	Proliferative Defect and Embryonic Lethality in Mice Homozygous for a Deletion in the p110α Subunit of Phosphoinositide 3-Kinase. Journal of Biological Chemistry, 1999, 274, 10963-10968.	3.4	388
131	Atm haploinsufficiency results in increased sensitivity to sublethal doses of ionizing radiation in mice. Nature Genetics, 1999, 21, 359-360.	21.4	114
132	Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nature Genetics, 1999, 22, 37-43.	21.4	711
133	The association of ATR protein with mouse meiotic chromosome cores. Chromosoma, 1999, 108, 95-102.	2.2	89
134	Murine modelling of classical lissencephaly. Neurogenetics, 1999, 2, 77-86.	1.4	9
135	Multiple ATM-Dependent Pathways: An Explanation for Pleiotropy. American Journal of Human Genetics, 1999, 64, 46-50.	6.2	56
136	Chapter 3.1.1 Embryonic stem cells and gene targeting. Handbook of Behavioral Neuroscience, 1999, , 259-271.	0.0	3
137	Chapter 3.1.2 Generation of transgenic mice by pronuclear DNA injection. Handbook of Behavioral Neuroscience, 1999, 13, 272-281.	0.0	0
138	Atm Is Dispensable for p53 Apoptosis and Tumor Suppression Triggered by Cell Cycle Dysfunction. Molecular and Cellular Biology, 1999, 19, 3095-3102.	2.3	42
139	Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nature Genetics, 1998, 19, 333-339.	21.4	554
140	Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature, 1998, 395, 702-707.	27.8	444
141	Genomic Organization of the Murine Miller–Dieker/Lissencephaly Region: Conservation of Linkage with the Human Region. Genome Research, 1997, 7, 625-634.	5.5	26
142	An Indirect Effect of Stat5a in IL-2–Induced Proliferation: A Critical Role for Stat5a in IL-2–Mediated IL-2 Receptor α Chain Induction. Immunity, 1997, 7, 691-701.	14.3	261
143	Social Interaction and Sensorimotor Gating Abnormalities in Mice Lacking Dvl1. Cell, 1997, 90, 895-905.	28.9	440
144	Atm selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways. Nature Genetics, 1997, 17, 453-456.	21.4	185

#	Article	IF	CITATIONS
145	Partial rescue of the prophase I defects of Atm-deficient mice by p53 and p21 null alleles. Nature Genetics, 1997, 17, 462-466.	21.4	111
146	Cloning and mapping of murine Dgcr2 and its homology to the Sez-12 seizure-related protein. Mammalian Genome, 1997, 8, 371-375.	2.2	20
147	Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology, 1997, 132, 107-124.	3.1	1,283
148	Identification and Chromosomal Localization of Atm, the Mouse Homolog of the Ataxia–Telangiectasia Gene. Genomics, 1996, 35, 39-45.	2.9	51
149	The murine homolog of the human breast and ovarian cancer susceptibility geneBrca1 maps to mouse chromosome 11D. Human Genetics, 1996, 97, 256-259.	3.8	14
150	Atm-Deficient Mice: A Paradigm of Ataxia Telangiectasia. Cell, 1996, 86, 159-171.	28.9	1,392
151	Fibroblast Growth Factor Receptor 3 Is a Negative Regulator of Bone Growth. Cell, 1996, 84, 911-921.	28.9	1,014
152	Failure of Embryonic Hematopoiesis andLethal Hemorrhages in Mouse Embryos Heterozygousfor a Knocked-In Leukemia Gene CBFB–MYH11. Cell, 1996, 87, 687-696.	28.9	289
153	The CBFÎ ² Subunit Is Essential for CBFα2 (AML1) Function In Vivo. Cell, 1996, 87, 697-708.	28.9	620
154	Characterization of familial partial 10p trisomy by chromosomal microdissection, FISH, and microsatellite dosage analysis. Human Genetics, 1996, 98, 396-402.	3.8	31
155	Isolation and characterization of mouseDishevelled-3., 1996, 207, 253-262.		89
156	Model mice and human disease. Nature Genetics, 1996, 13, 259-260.	21.4	42
157	Multicolour spectral karyotyping of mouse chromosomes. Nature Genetics, 1996, 14, 312-315.	21.4	307
158	The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nature Genetics, 1995, 11, 17-26.	21.4	328
159	Active anaphylaxis in IgE-deficient mice. Nature, 1994, 370, 367-370.	27.8	407
160	Intentional infantile ethylene glycol poisoning presenting as an inherited metabolic disorder. Journal of Pediatrics, 1992, 120, 421-424.	1.8	29
161	Molecular Biology and Nutrition Research. Journal of Nutrition, 1989, 119, 957-964.	2.9	4
162	Regulation of Gene Transcription by Multiple Hormones: Organization of Regulatory Elements. Progress in Molecular Biology and Translational Science, 1987, 34, 59-87.	1.9	8

#	Article	IF	CITATIONS
163	Differential Expression of the Genes for the Mitochondrial and Cytosolic Forms of Phosphoenolpyruvate Carboxykinase. Annals of the New York Academy of Sciences, 1986, 478, 31-45.	3.8	44