Monica A Cotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3726474/publications.pdf

Version: 2024-02-01

147 2,453 26 43
papers citations h-index g-index

151 151 151 3635
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Influence of milk proteins on the adhesion and formation of Bacillus sporothermodurans biofilms: Implications for dairy industrial processing. Food Control, 2022, 134, 108743.	5.5	7
2	Improving Quantitative EDS Chemical Analysis of Alloy Nanoparticles by PCA Denoising: Part I, Reducing Reconstruction Bias. Microscopy and Microanalysis, 2022, 28, 338-349.	0.4	7
3	Improving Quantitative EDS Chemical Analysis of Alloy Nanoparticles by PCA Denoising: Part II. Uncertainty Intervals. Microscopy and Microanalysis, 2022, 28, 723-731.	0.4	3
4	Role of Group V Atoms during GaAs Nanowire Growth Revealed by Molecular Dynamics Simulations: Implications in the Formation of Sharp Interfaces. ACS Applied Nano Materials, 2021, 4, 2903-2909.	5.0	4
5	Functionalized microchannels as xylem-mimicking environment: Quantifying X.Âfastidiosa cell adhesion. Biophysical Journal, 2021, 120, 1443-1453.	0.5	O
6	Oxygen plasma-enhanced covalent biomolecule immobilization on SU-8 thin films: A stable and homogenous surface biofunctionalization strategy. Applied Surface Science, 2021, 553, 149502.	6.1	14
7	Biocompatible Graphene Oxide Nanosheets Densely Functionalized with Biologically Active Molecules for Biosensing Applications. ACS Applied Nano Materials, 2021, 4, 8334-8342.	5.0	17
8	Antibacterial effect of hyaluronan/chitosan nanofilm in the initial adhesion of Pseudomonas aeruginosa wild type, and IV pili and LPS mutant strains. Surfaces and Interfaces, 2021, 26, 101415.	3.0	2
9	Controlled spatial organization of bacterial growth reveals key role of cell filamentation preceding Xylella fastidiosa biofilm formation. Npj Biofilms and Microbiomes, 2021, 7, 86.	6.4	6
10	Exploring fabrication methods to highly sensitive and selective InP nanowire biosensors. Journal of Physics: Conference Series, 2020, 1461, 012003.	0.4	2
11	Optical Absorption Exhibits Pseudo-Direct Band Gap of Wurtzite Gallium Phosphide. Scientific Reports, 2020, 10, 7904.	3.3	18
12	Interatomic potential for atomistic simulation of self-catalyzed GaAs nanowires growth. Computational Materials Science, 2020, 183, 109805.	3.0	5
13	Quantum Dots and Their Applications: What Lies Ahead?. ACS Applied Nano Materials, 2020, 3, 4920-4924.	5.0	147
14	Fractal analysis of the formation process and morphologies of hyaluronan/chitosan nanofilms in layer-by-layer assembly. Polymer, 2020, 191, 122283.	3.8	6
15	3D Nano-Manipulation and Nano-assembling by the smallest and the fastest shape memory alloy nano-tools. , 2019, , .		O
16	Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction. Nano Research, 2019, 12, 939-946.	10.4	3
17	Desenvolvimento de instrumentação para irradiação controlada de culturas celulares em estudos de bioestimulação. Revista Dos Trabalhos De Iniciação CientÃfica Da UNICAMP, 2019, , .	0.0	O
18	Flexible composites based on polyurethane and graphene oxide. Revista Dos Trabalhos De Iniciação CientÃfica Da UNICAMP, 2019, , .	0.0	0

#	Article	IF	CITATIONS
19	Electrostatic immobilization of antimicrobial peptides on polyethylenimine and their antibacterial effect against Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces, 2018, 164, 370-378.	5.0	13
20	Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Applied Surface Science, 2018, 445, 478-487.	6.1	44
21	Influence of pH and ionic strength on the antibacterial effect of hyaluronic acid/chitosan films assembled layer-by-layer. European Polymer Journal, 2018, 109, 198-205.	5.4	26
22	Nanowire Arrays as Force Sensors with Superâ∈Resolved Localization Position Detection: Application to Optical Measurement of Bacterial Adhesion Forces. Small Methods, 2018, 2, 1700411.	8.6	11
23	Characterising the strain in a twisted nanowire by scanning electron diffraction. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e82-e82.	0.1	0
24	Fermi energy dependence of the optical emission in core/shell InAs nanowire homostructures. Nanotechnology, 2017, 28, 295702.	2.6	1
25	InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. Nano Letters, 2017, 17, 5938-5949.	9.1	111
26	Stiffness signatures along early stages of Xylella fastidiosa biofilm formation. Colloids and Surfaces B: Biointerfaces, 2017, 159, 174-182.	5.0	11
27	Different growth regimes in InP nanowire growth mediated by Ag nanoparticles. Nanotechnology, 2017, 28, 505604.	2.6	5
28	Exploring Au Droplet Motion in Nanowire Growth: A Simple Route toward Asymmetric GaP Morphologies. Nano Letters, 2017, 17, 7274-7282.	9.1	5
29	Antibacterial and non-cytotoxic ultra-thin polyethylenimine film. Materials Science and Engineering C, 2017, 71, 718-724.	7.3	20
30	The Antitoxin Protein of a Toxin-Antitoxin System from Xylella fastidiosa Is Secreted via Outer Membrane Vesicles. Frontiers in Microbiology, 2016, 7, 2030.	3.5	20
31	Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability. Nano Letters, 2016, 16, 4656-4664.	9.1	65
32	Hyaluronan/chitosan nanofilms assembled layer-by-layer and their antibacterial effect: A study using Staphylococcus aureus and Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 2016, 141, 499-506.	5.0	52
33	Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa. Carbohydrate Polymers, 2016, 136, 1-11.	10.2	46
34	Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Scientific Reports, 2015, 5, 9856.	3.3	85
35	Interaction between lamellar twinning and catalyst dynamics in spontaneous core–shell InGaP nanowires. Nanoscale, 2015, 7, 12722-12727.	5.6	11
36	Characterization of the TolB–Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1372-1381.	2.3	12

3

#	Article	IF	CITATIONS
37	Localized Charge Transfer Process and Surface Band Bending in Methane Sensing by GaN Nanowires. Journal of Physical Chemistry C, 2015, 119, 21251-21260.	3.1	35
38	Spontaneous Periodic Diameter Oscillations in InP Nanowires: The Role of Interface Instabilities. Nano Letters, 2013, 13, 9-13.	9.1	32
39	Spatial modulation of above-the-gap cathodoluminescence in InP nanowires. Journal of Physics Condensed Matter, 2013, 25, 505303.	1.8	2
40	Enhancing in the performance of dye-sensitized solar cells by the incorporation of functionalized multi-walled carbon nanotubes into TiO2 films: The role of MWCNT addition. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 78-84.	3.9	36
41	On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation. Colloids and Surfaces B: Biointerfaces, 2013, 102, 519-525.	5.0	24
42	Optical phonon modes of wurtzite InP. Applied Physics Letters, 2013, 102, .	3.3	30
43	Surface Physicochemical Properties at the Micro and Nano Length Scales: Role on Bacterial Adhesion and Xylella fastidiosa Biofilm Development. PLoS ONE, 2013, 8, e75247.	2.5	47
44	Optical emission of InAs nanowires. Nanotechnology, 2012, 23, 375704.	2.6	45
45	Fragmentation of extracellular DNA by long-term exposure to radiation from uranium in aquatic environments. Journal of Environmental Monitoring, 2012, 14, 2108.	2.1	6
46	Highly-sensitive and label-free indium phosphide biosensor for early phytopathogen diagnosis. Biosensors and Bioelectronics, 2012, 36, 62-68.	10.1	21
47	DNA fragmentation by gamma radiation and electron beams using atomic force microscopy. Journal of Biological Physics, 2012, 38, 531-542.	1.5	19
48	Development of a recombinant fusion protein based on the dynein light chain LC8 for non-viral gene delivery. Journal of Controlled Release, 2012, 159, 222-231.	9.9	23
49	Initial crystallographic studies of a small heat-shock protein from <i>Xylella fastidiosa</i> . Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 535-539.	0.7	2
50	Kinetic Effects in InP Nanowire Growth and Stacking Fault Formation: The Role of Interface Roughening. Nano Letters, 2011, 11, 1934-1940.	9.1	19
51	Enhanced Surface Potential Variation on Nanoprotrusions of GaN Microbelt As a Probe for Humidity Sensing. Journal of Physical Chemistry C, 2011, 115, 5863-5867.	3.1	27
52	Optical properties of multi-layer type II InP/GaAs quantum dots studied by surface photovoltage spectroscopy. Journal of Applied Physics, 2011, 110, .	2.5	9
53	E[sub 1] Gap of Wurtzite InAs Single Nanowires Measured by Means of Resonant Raman Spectroscopy. , 2011, , .		1
54	The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Journal of Colloid and Interface Science, 2011, 359, 289-295.	9.4	171

#	Article	IF	CITATIONS
55	Spatial carrier distribution in InP/GaAs type II quantum dots and quantum posts. Nanotechnology, 2011, 22, 065703.	2.6	2
56	Polarized and resonant Raman spectroscopy on single InAs nanowires. Physical Review B, 2011, 84, .	3.2	59
57	Enhanced Eshelby Twist on Thin Wurtzite InP Nanowires and Measurement of Local Crystal Rotation. Physical Review Letters, 2011, 107, 195503.	7.8	29
58	Characterization of interface abruptness and material properties in catalytically grown III–V nanowires: exploiting plasmon chemical shift. Nanotechnology, 2010, 21, 295701.	2.6	7
59	Valence-band splitting energies in wurtzite InP nanowires: Photoluminescence spectroscopy and <i>ab initio </i> calculations. Physical Review B, 2010, 82, .	3.2	60
60	Optical emission and its decay time of type-II InP/GaAs quantum dots. Journal Physics D: Applied Physics, 2010, 43, 045303.	2.8	5
61	Nucleation and growth evolution of InP dots on InGaP/GaAs. Journal Physics D: Applied Physics, 2010, 43, 285301.	2.8	3
62	Direct Observation of Tetragonal Distortion in Epitaxial Structures through Secondary Peak Split in a Synchrotron Radiation Renninger Scan. Crystal Growth and Design, 2010, 10, 3436-3441.	3.0	13
63	Climbing the Academy Ladder in Brazil: Physics. , 2009, , .		2
64	III–V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?. Nanotechnology, 2009, 20, 275604.	2.6	15
65	Dibucaine effects on structural and elastic properties of lipid bilayers. Biophysical Chemistry, 2009, 139, 75-83.	2.8	30
66	Hybrid reflections in InGaP/GaAs(001) by synchrotron radiation multiple diffraction. Physica Status Solidi (B): Basic Research, 2009, 246, 544-547.	1.5	3
67	Evidence of space charge regions within semiconductor nanowires from Kelvin probe force microscopy. Nanotechnology, 2009, 20, 465705.	2.6	12
68	Fractal analysis of Xylella fastidiosabio film formation. Journal of Applied Physics, 2009, 106, 024702.	2.5	14
69	Probing Individual Quantum Dots: Noise in Self-Assembled Systems. Journal of Nanoscience and Nanotechnology, 2009, 9, 6390-6395.	0.9	0
70	Carbon Nanotubes as Reinforcement Elements of Composite Nanotools. Nano Letters, 2008, 8, 842-847.	9.1	21
71	Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures. Nanotechnology, 2008, 19, 015601.	2.6	6
72	Resonant x-ray scattering from self-assembled InPâ^•GaAs(001) islands: Understanding the chemical structure of quaternary quantum dots. Applied Physics Letters, 2008, 92, 021903.	3.3	8

#	Article	IF	CITATIONS
73	InGaP/GaAs(001) structural characterization by means of synchrotron radiation Renninger scan. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C592-C592.	0.3	O
74	Compositional modulation and surface stability in InGaP films: Understanding and controlling surface properties. Journal of Applied Physics, 2007, 101, 064907.	2.5	15
75	Carrier dynamics in stacked InPâ^•GaAs quantum dots. Applied Physics Letters, 2007, 91, 121917.	3.3	5
76	Structural and optical properties of InP quantum dots grown on GaAs(001). Journal of Applied Physics, 2007, 101, 073508.	2.5	15
77	Strain relaxation and stress-driven interdiffusion in InAsâ^•InGaAsâ^•InP nanowires. Applied Physics Letters, 2007, 91, 063122.	3.3	3
78	Influence of the Material and the Surface Roughness of the Drying Support on the Selfâ€detachment of Maltodextrin Films. Starch/Staerke, 2007, 59, 498-503.	2.1	1
79	Exciton binding energy in type II quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 385-388.	0.8	5
80	Structural and optical properties of InP quantum dots grown on GaAs (001). Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 238-240.	0.8	0
81	Synthetic melanin films: Assembling mechanisms, scaling behavior, and structural properties. Journal of Applied Physics, 2006, 99, 113511.	2.5	41
82	Electrical properties of individual and small ensembles of InAs/InP nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1353-1358.	1.8	0
83	Structural and Optical Characterization of Strained Free-Standing InP Nanowires. Journal of Nanoscience and Nanotechnology, 2006, 6, 2182-2186.	0.9	17
84	Excitongfactor of type-IIInPâ^•GaAssingle quantum dots. Physical Review B, 2006, 73, .	3.2	21
85	Brazil: How Many Women in Physics?. AIP Conference Proceedings, 2005, , .	0.4	0
86	Mechanism of lateral ordering of InP dots grown on InGaP layers. Applied Physics Letters, 2005, 87, 013105.	3.3	25
87	On the nucleation of GaP/GaAs and the effect of buried stress fields. Materials Research Society Symposia Proceedings, 2005, 891, 1.	0.1	0
88	Vertical and in-plane electrical transport in InAs/InP semiconductor nanostructures. Materials Research Society Symposia Proceedings, 2004, 829, 214.	0.1	0
89	Structural investigation of InAs/InGaAs/InP nanostructures: origin and stability of nanowires Materials Research Society Symposia Proceedings, 2004, 829, 232.	0.1	0
90	Carbon nanotube probe resolution: a quantitative analysis using Fourier Transform. Physica Status Solidi A, 2004, 201, 888-893.	1.7	9

#	Article	IF	Citations
91	Magneto-optics from type-II single quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 543-546.	0.8	1
92	Carbon nanotubes growth by chemical vapor deposition using thin film nickel catalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 112, 147-153.	3.5	55
93	Three-dimensional mapping of the strain anisotropy in self-assembled quantum-wires by grazing incidence x-ray diffraction. Applied Physics Letters, 2004, 85, 3581-3583.	3.3	15
94	Thin films of synthetic melanin. Journal of Non-Crystalline Solids, 2004, 338-340, 634-638.	3.1	60
95	Synthetic melanin thin films: Structural and electrical properties. Journal of Applied Physics, 2004, 96, 5803-5807.	2.5	41
96	Vertical stacks of InAs quantum wires in an InP matrix. Journal of Crystal Growth, 2003, 254, 1-5.	1.5	8
97	Role of V/III ratio on atomic ordering and surface morphology of InGaP layers grown by chemical beam epitaxy. Surface Science, 2003, 540, 129-135.	1.9	6
98	Adhesion forces measured between a calcium blocker drug and its receptor in living cells using atomic force microscope. FEBS Letters, 2003, 552, 155-159.	2.8	7
99	Spatial ordering in InP/InGaP nanostructures. Applied Physics Letters, 2003, 82, 3523-3525.	3.3	16
100	Spatially resolved electrical properties of InAs/InP quantum dots and wires. Nanotechnology, 2003, 14, 509-514.	2.6	13
101	Microstructure and Magnetic Properties of Co Films on Si: Thickness and Roughness Dependence. Materials Science Forum, 2002, 403, 111-116.	0.3	0
102	Role of group V exchange on the shape and size of InAs/InP self-assembled nanostructures. Journal of Applied Physics, 2002, 92, 7523-7526.	2.5	43
103	Anisotropic unstable and stable growth of homoepitaxial (100) InP films. Surface Science, 2002, 515, 117-125.	1.9	8
104	Shape Transition in Self-Organized InAs/InP Nanostructures. Materials Research Society Symposia Proceedings, 2001, 696, 1.	0.1	1
105	Shape Transition in Self-Organized InAs/InP Nanostructures. Materials Research Society Symposia Proceedings, 2001, 707, 571.	0.1	2
106	Faceting evolution during self-assembling of InAs/InP quantum wires. Applied Physics Letters, 2001, 79, 3854-3856.	3.3	43
107	Analysis of Be doping of InGaP lattice matched to GaAs. Journal of Crystal Growth, 2000, 208, 65-72.	1.5	4
108	Impact of growth rate on the quality of ZNS-MQW InGaAsP/InP laser structures grown by LP-MOVPE. Journal of Electronic Materials, 2000, 29, 62-68.	2,2	2

#	Article	IF	CITATIONS
109	Influence of rough substrates on the morphology evolution of epitaxial films. Physical Review B, 2000, 61, 13703-13709.	3.2	9
110	Surface size effect on the growth mode and morphology of InP epitaxial films. Physical Review B, 2000, 62, 15409-15412.	3.2	1
111	Light scattering and atomic force microscopy study of InAs island formation on InP. Journal of Applied Physics, 2000, 87, 1165-1171.	2.5	14
112	Atomic Force Microscopy (AFM) Investigation of Langmuir-Blodgett (LB) Films of Sugar Cane Bagasse Lignin. Holzforschung, 2000, 54, 55-60.	1.9	25
113	Evidence of Be3P2 formation during growth of Be-doped phosphorus-based semiconductor compounds. Applied Physics Letters, 1999, 74, 3669-3671.	3.3	10
114	Growth of Be-doped homoepitaxial GaAs films on rough substrates. Journal of Crystal Growth, 1999, 205, 36-42.	1.5	0
115	Confinement versus localization for quantum wells and quantum wires in a self-assembled structure. Superlattices and Microstructures, 1999, 25, 137-141.	3.1	1
116	AFM studies of composite 16-mer polyaniline Langmuir-Blodgett (LB) Films. Synthetic Metals, 1999, 101, 830-831.	3.9	11
117	Morphological, optical and structural properties of zero-net-strained InGaAsP/InP structures grown by LP-MOVPE for 1.55mum laser applications. Brazilian Journal of Physics, 1999, 29, 839-842.	1.4	0
118	Size effects on the growth mode and roughness of sub-micron structures grown by selective area epitaxy. Brazilian Journal of Physics, 1999, 29, 764-767.	1.4	0
119	Equilibrium shape and nucleation on InP(001) surfaces: effect of surface steps. Journal of Crystal Growth, 1998, 191, 44-50.	1.5	3
120	On the optical properties of InAs/InP systems: The role of two-dimensional structures and three-dimensional islands. Applied Physics Letters, 1998, 72, 1015-1017.	3.3	10
121	Interface roughness localization in quantum wells and quantum wires. Physical Review B, 1998, 58, 9876-9880.	3.2	7
122	Self-assembled islands on strained systems:â€fControl of formation, evolution, and spatial distribution. Physical Review B, 1998, 57, 12501-12505.	3.2	8
123	Surface morphologies in GaAs homoepitaxy: Mound formation and evolution. Physical Review B, 1998, 58, 1947-1953.	3.2	20
124	On the onset of InAs islanding on InP: influence of surface steps. Surface Science, 1997, 388, 84-91.	1.9	13
125	Surface morphologies of Be-doped homoepitaxial InP films. Journal of Crystal Growth, 1996, 164, 409-414.	1.5	4
126	Magnetoexciton anisotropy in quantum wells versus quantum wires. Physical Review B, 1996, 53, R16156-R16159.	3.2	3

#	Article	IF	Citations
127	Kinetic roughness in epitaxy (experimental). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 30, 137-142.	3.5	10
128	On the origin of oval defects in metalorganic molecular beam epitaxy of InP. Applied Physics Letters, 1995, 66, 2358-2360.	3.3	13
129	Be incorporation and surface morphologies in homoepitaxial InP films. Applied Physics Letters, 1995, 67, 1122-1124.	3.3	3
130	InGaAs/InP quantum wells with thickness modulation. Applied Physics Letters, 1994, 65, 857-859.	3.3	14
131	Lateral thickness modulation of InGaAs/InP quantum wells grown by metalorganic molecular beam epitaxy. Journal of Applied Physics, 1994, 75, 630-632.	2.5	15
132	Multichamber processing for optoelectronics. Microelectronic Engineering, 1994, 25, 255-264.	2.4	0
133	InGaAs/InP quantum wells with periodic thickness variation. Solid-State Electronics, 1994, 37, 653-656.	1.4	0
134	Scanning force microscopy measurement of edge growth rate enhancement in selective area epitaxy. Applied Physics Letters, 1993, 62, 496-498.	3.3	11
135	Kinetic surface roughening in molecular beam epitaxy of InP. Physical Review Letters, 1993, 70, 4106-4109.	7.8	114
136	Selective Area Epitaxy for Optoelectronic Devices. Materials Research Society Symposia Proceedings, 1993, 300, 89.	0.1	1
137	Evolution of Roughness on InP Layers Observed by Scanning Force Microscopy. Materials Research Society Symposia Proceedings, 1993, 312, 23.	0.1	3
138	Monolithic integration of InGaAsp/Inp lasers and heterostructure bipolar transistors by selective area epitaxy. Electronics Letters, 1993, 29, 645.	1.0	7
139	Feature size effects on selective area epitaxy of InGaAs. Applied Physics Letters, 1992, 61, 1936-1938.	3.3	13
140	Compensation in heavily carbon-doped GaAlAs grown by vacuum chemical epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1992, 14, 57-62.	3.5	0
141	Monte Carlo simulation study on the flow conditions of a vacuum chemical epitaxy system. Journal of Crystal Growth, 1992, 121, 429-439.	1.5	0
142	Growth and characterization of GaAs on Si by vacuum chemical epitaxy. Journal of Applied Physics, 1991, 69, 732-735.	2.5	3
143	Heavily carbonâ€doped GaAlAs grown by vacuum chemical epitaxy. Applied Physics Letters, 1990, 57, 680-682.	3.3	3
144	Growth of InP layers by vacuum chemical epitaxy (VCE). Journal of Crystal Growth, 1989, 98, 759-764.	1.5	4

#	Article	IF	CITATIONS
145	Field effect transistor with 170 nm gate fabricated by atomic force lithography. , 0, , .		0
146	Mechanical Bottom-up Nano-Assembling and Nano-Manipulation Using Shape Memory Alloy Nano-Gripper. Solid State Phenomena, 0, 323, 130-139.	0.3	0
147	Effect of kinetics on the nucleation of thin InAs films on InP by chemical beam epitaxy. , 0, , .		0