Guang Han

List of Publications by Citations

Source: https://exaly.com/author-pdf/37264/guang-han-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81
papers

2,544
citations

25
h-index

86
ext. papers

2,544
g-index

5.24
ext. citations

2,544
papers
papers

3,148
ext. citations

2,544
papers
papers

49
papers
papers
papers

49
papers
papers
papers

L-index

#	Paper	IF	Citations
81	Nanostructured thermoelectric materials: Current research and future challenge. <i>Progress in Natural Science: Materials International</i> , 2012 , 22, 535-549	3.6	485
80	Indium selenides: structural characteristics, synthesis and their thermoelectric performances. <i>Small</i> , 2014 , 10, 2747-65	11	201
79	High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. <i>Nano Energy</i> , 2015 , 16, 367-374	17.1	169
78	Enhanced Thermoelectric Performance of Nanostructured Bi2Te3 through Significant Phonon Scattering. <i>ACS Applied Materials & Acs Applied & Acs A</i>	9.5	155
77	n-type Bi-doped PbTe Nanocubes with Enhanced Thermoelectric Performance. <i>Nano Energy</i> , 2017 , 31, 105-112	17.1	84
76	Texture-dependent thermoelectric properties of nano-structured Bi2Te3. <i>Chemical Engineering Journal</i> , 2020 , 388, 124295	14.7	72
75	Facile Surfactant-Free Synthesis of p-Type SnSe Nanoplates with Exceptional Thermoelectric Power Factors. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6433-7	16.4	71
74	Facile in situ solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1394-1402	13	70
73	Te-Doped Cu2Se nanoplates with a high average thermoelectric figure of merit. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9213-9219	13	67
72	Impacts of Cu deficiency on the thermoelectric properties of Cu2\(\mathbb{K}\)Se nanoplates. <i>Acta Materialia</i> , 2016 , 113, 140-146	8.4	58
71	In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7109	13	52
70	T-Shaped Bi2Te3IIe Heteronanojunctions: Epitaxial Growth, Structural Modeling, and Thermoelectric Properties. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 12458-12464	3.8	51
69	Enhanced Thermoelectric Performance of Ultrathin Bi2Se3 Nanosheets through Thickness Control. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500025	6.4	49
68	Chlorine-Enabled Electron Doping in Solution-Synthesized SnSe Thermoelectric Nanomaterials. <i>Advanced Energy Materials</i> , 2017 , 7, 1602328	21.8	48
67	Rational design of Bi2Te3 polycrystalline whiskers for thermoelectric applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 989-95	9.5	47
66	Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18767-18774	13	43
65	Twin Engineering in Solution-Synthesized Nonstoichiometric Cu5FeS4 Icosahedral Nanoparticles for Enhanced Thermoelectric Performance. <i>Advanced Functional Materials</i> , 2018 , 28, 1705117	15.6	37

(2018-2016)

64	Phase control and formation mechanism of AlMn(Be) intermetallic particles in MgAl-based alloys with FeCl3 addition or melt superheating. <i>Acta Materialia</i> , 2016 , 114, 54-66	8.4	35
63	Realizing Bi-doped £Cu2Se as a promising near-room-temperature thermoelectric material. Chemical Engineering Journal, 2019 , 371, 593-599	14.7	34
62	High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18920-3	16.4	29
61	Thermal performance of two heat exchangers for thermoelectric generators. <i>Case Studies in Thermal Engineering</i> , 2016 , 8, 164-175	5.6	28
60	Grain refinement of MgAl based alloys by a new Ala master alloy. <i>Journal of Alloys and Compounds</i> , 2009 , 467, 202-207	5.7	27
59	Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors. <i>Case Studies in Thermal Engineering</i> , 2017 , 10, 63-72	5.6	26
58	Enhancing the Thermoelectric Performance of p-Type MgSb via Codoping of Li and Cd. <i>ACS Applied Materials & Materi</i>	9.5	25
57	A new crystal: layer-structured rhombohedral In3Se4. <i>CrystEngComm</i> , 2014 , 16, 393-398	3.3	25
56	Topotactic anion-exchange in thermoelectric nanostructured layered tin chalcogenides with reduced selenium content. <i>Chemical Science</i> , 2018 , 9, 3828-3836	9.4	24
55	General surfactant-free synthesis of binary silver chalcogenides with tuneable thermoelectric properties. <i>Chemical Engineering Journal</i> , 2020 , 393, 124763	14.7	22
54	Melt-spun Sn1Bb Mn Te with unique multiscale microstructures approaching exceptional average thermoelectric zT. <i>Nano Energy</i> , 2021 , 84, 105879	17.1	21
53	Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying. <i>Nano Energy</i> , 2020 , 76, 105084	17.1	20
52	Grain refinement of AZ31 magnesium alloy by new Al-Ti-C master alloys. <i>Transactions of Nonferrous Metals Society of China</i> , 2009 , 19, 1057-1064	3.3	20
51	High thermoelectric performance of CuSbSe nanocrystals with CuSe in situ inclusions synthesized by a microwave-assisted solvothermal method. <i>Nanoscale</i> , 2018 , 10, 14546-14553	7.7	19
50	Paramagnetic Cu-doped Bi2Te3 nanoplates. <i>Applied Physics Letters</i> , 2014 , 104, 053105	3.4	19
49	Thermal stability and oxidation of layer-structured rhombohedral In3Se4 nanostructures. <i>Applied Physics Letters</i> , 2013 , 103, 263105	3.4	19
48	Duplex nucleation in MgAlanMn alloys with carbon inoculation. <i>Journal of Alloys and Compounds</i> , 2009 , 487, 194-197	5.7	19
47	Conceptual design and performance evaluation of a hybrid concentrating photovoltaic system in preparation for energy. <i>Energy</i> , 2018 , 147, 547-560	7.9	18

46	Large-Scale Surfactant-Free Synthesis of p-Type SnTe Nanoparticles for Thermoelectric Applications. <i>Materials</i> , 2017 , 10,	3.5	18
45	Realizing enhanced thermoelectric properties in Cu2S-alloyed SnSe based composites produced via solution synthesis and sintering. <i>Journal of Materials Science and Technology</i> , 2021 , 78, 121-130	9.1	18
44	A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems. <i>Renewable Energy</i> , 2017 , 112, 166-186	8.1	17
43	Grain refining efficiency of a new AllBD.6C master alloy on AZ63 magnesium alloy. <i>Journal of Alloys and Compounds</i> , 2010 , 491, 165-169	5.7	17
42	Effect of manganese on the microstructure of MgBAl alloy. <i>Journal of Alloys and Compounds</i> , 2009 , 486, 136-141	5.7	17
41	Nanostructured monoclinic CuSe as a near-room-temperature thermoelectric material. <i>Nanoscale</i> , 2020 , 12, 20536-20542	7:7	17
40	A novel absorptive/reflective solar concentrator for heat and electricity generation: An optical and thermal analysis. <i>Energy Conversion and Management</i> , 2016 , 114, 142-153	10.6	16
39	Trifold Tellurium One-Dimensional Nanostructures and Their Formation Mechanism. <i>Crystal Growth and Design</i> , 2013 , 13, 4796-4802	3.5	16
38	Phase Control and Formation Mechanism of New-Phase Layer-Structured Rhombohedral In3Se4 Hierarchical Nanostructures. <i>Crystal Growth and Design</i> , 2013 , 13, 5092-5099	3.5	15
37	Ba6Bx Nd8+2x Ti18O54 Tungsten Bronze: A New High-Temperature n-Type Oxide Thermoelectric. Journal of Electronic Materials, 2016 , 45, 1894-1899	1.9	14
36	Morphology and Texture Engineering Enhancing Thermoelectric Performance of Solvothermal Synthesized Ultralarge SnS Microcrystal. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2192-2199	6.1	12
35	Structure-Dependent Thermoelectric Properties of GeSeTe (0 IID.5). <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 41381-41389	9.5	12
34	Anion-exchange synthesis of thermoelectric layered SnS0.1Se0.9\(\mathbb{N}\)Tex nano/microstructures in aqueous solution: complexity and carrier concentration. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 7572-	7579	11
33	In3Se4 and S-doped In3Se4 nano/micro-structures as new anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2015 , 3, 7560-7567	13	11
32	Facile microwave-assisted hydrothermal synthesis of SnSe: impurity removal and enhanced thermoelectric properties. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10333-10341	7.1	11
31	Achieving Enhanced Thermoelectric Performance in (SnTe)(SbTe) and (SnTe)(SbSe) Synthesized via Solvothermal Reaction and Sintering. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 44805-44814	9.5	11
30	Co-doped Sb2Te3 paramagnetic nanoplates. Journal of Materials Chemistry C, 2016, 4, 521-525	7.1	10
29	Long wavelength emissions of Se4+-doped In2O3 hierarchical nanostructures. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6529	7.1	8

(2021-2021)

28	Exceptional Performance Driven by Planar Honeycomb Structure in a New High Temperature Thermoelectric Material BaAgAs. <i>Advanced Functional Materials</i> , 2021 , 31, 2100583	15.6	8
27	Facile Surfactant-Free Synthesis of p-Type SnSe Nanoplates with Exceptional Thermoelectric Power Factors. <i>Angewandte Chemie</i> , 2016 , 128, 6543-6547	3.6	8
26	Realizing Cd and Ag codoping in p-type Mg3Sb2 toward high thermoelectric performance. <i>Journal of Magnesium and Alloys</i> , 2021 ,	8.8	7
25	Dynamic Epitaxial Crystallization of SnSe on the Oxidized SnSe Surface and Its Atomistic Mechanisms. <i>ACS Applied Materials & Mechanisms</i> . <i>ACS Applied Materials & Mechanisms</i> .	9.5	6
24	A scaling law for monocrystalline PV/T modules with CCPC and comparison with triple junction PV cells. <i>Applied Energy</i> , 2017 , 202, 755-771	10.7	6
23	Unconventional Doping Effect Leads to Ultrahigh Average Thermoelectric Power Factor in Cu SbSe -based Composites <i>Advanced Materials</i> , 2022 , e2109952	24	6
22	Realizing Enhanced Thermoelectric Performance and Hardness in Icosahedral Cu FeS Se with High-Density Twin Boundaries. <i>Small</i> , 2021 , e2104592	11	6
21	Exploring thermoelectric performance of Ca3Co4O9+Iteramics via chemical electroless plating with Cu. <i>Journal of Alloys and Compounds</i> , 2020 , 821, 153522	5.7	5
20	Regulating the electronic structure of ReS2 by Mo doping for electrocatalysis and lithium storage. <i>Chemical Engineering Journal</i> , 2021 , 414, 128811	14.7	5
19	Achieving enhanced thermoelectric performance of Ca1MJLaxSryMnO3 via synergistic carrier concentration optimization and chemical bond engineering. <i>Chemical Engineering Journal</i> , 2021 , 408, 127364	14.7	5
18	Manipulating the phase transformation temperature to achieve cubic Cu5FeS4\(\mathbb{R}\)Sex and enhanced thermoelectric performance. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 17222-17228	7.1	4
17	Constructing n-type Ag2Se/CNTs composites toward synergistically enhanced thermoelectric and mechanical performance. <i>Acta Materialia</i> , 2022 , 223, 117502	8.4	4
16	A new indium selenide phase: controllable synthesis, phase transformation and photoluminescence properties. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 13573-13584	7.1	4
15	Thermoelectric performance of binary lithium-based compounds: Li3Sb and Li3Bi. <i>Applied Physics Letters</i> , 2021 , 119, 033901	3.4	4
14	Phase Composition Manipulation and Twin Boundary Engineering Lead to Enhanced Thermoelectric Performance of Cu2SnS3. <i>ACS Applied Energy Materials</i> , 2021 , 4, 9240-9247	6.1	4
13	Structural Core-Shell beyond Chemical Homogeneity in Non-Stoichiometric CuFeS Nano-Icosahedrons: An in Situ Heating TEM Study. <i>Nanomaterials</i> , 2019 , 10,	5.4	3
12	Phase Modulation Enabled High Thermoelectric Performance in Polycrystalline GeSe 0.75 Te 0.25. <i>Advanced Functional Materials</i> ,2111238	15.6	3
11	Ultralow Lattice Thermal Conductivity of Cubic CuFeS2 Induced by Atomic Disorder. <i>Chemistry of Materials</i> , 2021 , 33, 9795-9802	9.6	3

10	Band convergence and thermoelectric performance enhancement of InSb via Bi doping. <i>Intermetallics</i> , 2021 , 139, 107347	3.5	2
9	Nitrogen-doped activated porous carbon for 4.5 ll lithium-ion capacitor with high energy and power density. <i>Journal of Energy Storage</i> , 2021 , 47, 103675	7.8	1
8	Identification of vibrational mode symmetry and phonon anharmonicity in SbCrSe3 single crystal using Raman spectroscopy. <i>Science China Materials</i> , 2021 , 64, 2824-2834	7.1	1
7	Solution-Synthesized SnSeS: Dual-Functional Materials with Enhanced Electrochemical Storage and Thermoelectric Performance. <i>ACS Applied Materials & District Research</i> , 13, 37201-37211	9.5	1
6	A new insight into heterogeneous nucleation mechanism of Al by non-stoichiometric TiCx. <i>Acta Materialia</i> , 2022 , 233, 117977	8.4	1
5	Simultaneously optimized thermoelectric and mechanical performance of p-type polycrystalline SnSe enabled by CNTs addition. <i>Scripta Materialia</i> , 2022 , 218, 114846	5.6	1
4	Phase Tuning for Enhancing the Thermoelectric Performance of Solution-Synthesized CuS. <i>ACS Applied Materials & District Applied & District</i>	9.5	0
3	Self-assembled epitaxy of Ga2Se3 on the oxidized GaSe surface and atomic imaging of the Ga2Se3/GaSe heterostructure. <i>Applied Surface Science</i> , 2022 , 586, 152774	6.7	O
2	Attaining enhanced thermoelectric performance in p-type (SnSe)1(SnS2) produced via sintering their solution-synthesized micro/nanostructures. <i>Journal of Materials Science and Technology</i> , 2022 , 120, 205-213	9.1	O
1	Revealing the intrinsic p-to-n transition mechanism on Mg3Sb2 through extra Mg. <i>Applied Physics Letters</i> , 2022 , 120, 173902	3.4	O