Elena A Ivleva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/372632/publications.pdf

Version: 2024-02-01

933264 996849 46 311 10 15 citations h-index g-index papers 51 51 51 174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular design, synthesis and biological evaluation of cage compound-based inhibitors of hepatitis C virus p7 ion channels. European Journal of Medicinal Chemistry, 2018, 158, 214-235.	2.6	32
2	Facile Approach for the Synthesis of 2,3,4,9-Tetrahydro-1H-xanthen-1-ones and 8,9,10,12-Tetrahydro-11H-benzo[a]xanthen-11-ones via Trapping of o-Quinone Methides. Synthetic Communications, 2012, 42, 1832-1847.	1.1	24
3	Convenient Synthesis of Memantine Hydrochloride. Organic Preparations and Procedures International, 2017, 49, 155-162.	0.6	18
4	One-pot synthesis of cage alcohols. Russian Journal of Organic Chemistry, 2017, 53, 971-976.	0.3	18
5	Reactions of 6,7-dimethoxy- 3,4-dihydroisoquinoline with o-quinone methides. Chemistry of Heterocyclic Compounds, 2011, 47, 845-850.	0.6	13
6	Synthesis of polycarboxylic acids of adamantane series. Russian Journal of Organic Chemistry, 2015, 51, 180-183.	0.3	13
7	Synthesis of amino polycarboxylic acids of the adamantane series. Russian Journal of Organic Chemistry, 2016, 52, 1394-1399.	0.3	11
8	Diesters of dicarboxylic acids of the adamantane series: Synthesis, physicochemical properties, and thermo-oxidative stability. Petroleum Chemistry, 2015, 55, 673-678.	0.4	10
9	Diesters of mixed carboxylic acids of the adamantane series: Synthesis, physicochemical properties, and thermo-oxidative stability. Petroleum Chemistry, 2015, 55, 133-139.	0.4	10
10	Synthesis of nitroxy- and hydroxy-substituted polycarboxylic acids of the adamantane series. Russian Journal of Organic Chemistry, 2015, 51, 1382-1387.	0.3	10
11	Synthesis of diacetylamino and diamino derivatives of adamantane series. Russian Journal of Organic Chemistry, 2017, 53, 1170-1175.	0.3	10
12	Effect of the structure of adamantane-containing diesters on the thermooxidative stability. Russian Journal of General Chemistry, 2014, 84, 2464-2466.	0.3	9
13	Selective Nitroxylation of Adamantane Derivatives in the System Nitric Acid–Acetic Anhydride. Russian Journal of Organic Chemistry, 2020, 56, 1532-1539.	0.3	9
14	Chemoselectivity of Nitroxylation of Cage Hydrocarbons. Russian Journal of Organic Chemistry, 2020, 56, 1702-1710.	0.3	9
15	2-(2-hydroxyphenyl)-2-adamantanol in Ritter reaction. Russian Journal of Organic Chemistry, 2011, 47, 1686-1689.	0.3	8
16	Improved approach towards synthesis of adamantane-1,3,5-triol. Russian Journal of General Chemistry, 2015, 85, 1830-1833.	0.3	8
17	Synthesis of (3-Hydroxyadamantan-1-yl)methanols. Russian Journal of Organic Chemistry, 2018, 54, 1294-1300.	0.3	8
18	Synthesis of adamantane functional derivatives basing on N-[(adamantan-1-yl)alkyl]acetamides. Russian Journal of Organic Chemistry, 2016, 52, 1558-1564.	0.3	7

#	Article	IF	CITATIONS
19	Diesters of adamantanecarboxylic acids as promising components of base stocks for industrial synthetic oils. Petroleum Chemistry, 2016, 56, 873-875.	0.4	7
20	Synthesis of hydroxy derivatives from adamantanecarboxylic acids in the system MnO2–H2SO4. Russian Journal of Organic Chemistry, 2016, 52, 785-790.	0.3	6
21	Synthesis of Cage Acylamino Derivatives in Nitric Acid Medium. Russian Journal of Organic Chemistry, 2021, 57, 1-12.	0.3	6
22	Reactions of Cage Substrates with Sulfur Nucleophiles. Russian Journal of Organic Chemistry, 2021, 57, 355-363.	0.3	6
23	Leasing instruments of high-rise construction financing. E3S Web of Conferences, 2018, 33, 03057.	0.2	5
24	Synthesis, Physicochemical Properties, and Thermo-Oxidative Stability of Triesters of 1,3,5-Adamantanetriol and 7-Ethyl-1,3,5-Adamantanetriol. Petroleum Chemistry, 2019, 59, 1235-1239.	0.4	5
25	The Synthesis, Physicochemical Properties, and Thermo-Oxidative Stability of Esters of a Tricarboxylic Acid of the Adamantane Series. Petroleum Chemistry, 2017, 57, 1088-1092.	0.4	4
26	Synthesis, Physicochemical Properties, and Thermo-Oxidative Stability of Diesters of 5,7-Dimethyl-1,3-Adamantanediol and 5,7-Dimethyl-1,3-bis(Hydroxymethyl)adamantane. Petroleum Chemistry, 2018, 58, 687-693.	0.4	4
27	Kinetic Study of the Nitrolysis of Haloadamantanes. Russian Journal of Organic Chemistry, 2020, 56, 1525-1531.	0.3	4
28	Synthesis of 3,5-Bis(hydroxymethyl)adamantan-1-ols and 3,5-Bis(nitrooxymethyl)adamantan-1-yl Nitrates. Russian Journal of Organic Chemistry, 2020, 56, 1562-1569.	0.3	4
29	The reaction of 2,5-bis[(dimethylamino)-methyl]hydroquinone and 3-(dimethylamino)-2-cyclohexen-1-ones. Chemistry of Heterocyclic Compounds, 2010, 46, 1011-1012.	0.6	3
30	Reactions of 2-hydroxymethylphenols with Lawesson's reagent. Chemistry of Heterocyclic Compounds, 2011, 47, 901-905.	0.6	3
31	One-pot synthesis of polycarboxylic acids of adamantane type. Russian Journal of General Chemistry, 2014, 84, 2262-2263.	0.3	3
32	Management of Developing the Leasing Sector of Entrepreneurial Economy. Procedia Engineering, 2016, 165, 980-989.	1.2	3
33	Synthesis, Physicochemical Properties, and Thermo-Oxidative Stability of Diesters of 5,7-Dimethyl-3-hydroxymethyl-1-adamantanol. Russian Journal of General Chemistry, 2018, 88, 1606-1611.	0.3	3
34	Oxidation of Deactivated Cage Substrates in the System H2SO4–HNO3. Russian Journal of Organic Chemistry, 2020, 56, 412-421.	0.3	3
35	Synthesis of 2-Oxaadamantane Derivatives. Russian Journal of Organic Chemistry, 2022, 58, 38-46.	0.3	3
36	2-(4-Methoxyphenyl)-4H-1,3,2-benzoxathiaphosphinine 2-sulfide. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o388-o389.	0.2	2

#	Article	IF	CITATIONS
37	Synthesis of Substituted Bridged Carboxylic Acids of the Adamantane Series. Russian Journal of Organic Chemistry, 2020, 56, 1399-1406.	0.3	2
38	Synthesis and Chemical Transformations of N-Adamantylated Amides. Russian Journal of Organic Chemistry, 2022, 58, 669-678.	0.3	2
39	Synthesis of 2-(2-hydroxybenzyl)phthalazin-1(2H)-ones. Chemistry of Heterocyclic Compounds, 2011, 46, 1413-1414.	0.6	1
40	Synthesis and structure of 15-(1-benzyl-1H-imidazol-5-yl)-9,10-dimethoxy-12,13-dihydro-7aH,15H-naphto[1′,2′:5,6][1,3]oxazino[2,3-Crystallography Reports, 2015, 60, 67-71.	a]isoo.quinc	lin ∉.
41	Synthesis and structure of spiro[2-(2-methylphenyl)-4H-1,3-benzoxazine-4,2′-adamantane]. Crystallography Reports, 2015, 60, 63-66.	0.1	1
42	Infrastructural development factors of leasing entrepreneurship in real sector of economy. IOP Conference Series: Earth and Environmental Science, 2017, 90, 012004.	0.2	1
43	Synthesis of Diamantane Derivatives in Nitric Acid Media. Russian Journal of Organic Chemistry, 2021, 57, 186-194.	0.3	1
44	N-Substituted S-Alkyl Carbamothioates in the Synthesis of Nitrogen-containing Functional Derivatives of the Adamantane Series. Russian Journal of Organic Chemistry, 2021, 57, 1281-1288.	0.3	1
45	Reaction of 1,3,5,7-Tetramethyladamantane with Nitric Acid. Russian Journal of Organic Chemistry, 2021, 57, 845-848.	0.3	0
46	Synthesis and Chemical Transformations of 7-Hydroxybicyclo [3.3.1] nonane-3-carbohydrazide. Russian Journal of Organic Chemistry, 2020, 56, 1942-1951.	0.3	0