List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3726162/publications.pdf Version: 2024-02-01

FEDNANDO ROCHA

#	Article	IF	CITATIONS
1	Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications, 2008, 9, 82-84.	1.6	592
2	Microencapsulation with chitosan by spray drying for industry applications – A review. Trends in Food Science and Technology, 2013, 31, 138-155.	7.8	260
3	Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: Comparison of various error functions. Journal of Hazardous Materials, 2008, 151, 794-804.	6.5	166
4	Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food and Bioprocess Technology, 2021, 14, 209-231.	2.6	125
5	Microencapsulation of vitamin A: A review. Trends in Food Science and Technology, 2016, 51, 76-87.	7.8	121
6	Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying – A review. Food Chemistry, 2021, 339, 127850.	4.2	121
7	Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technology, 2016, 289, 71-78.	2.1	107
8	Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon. Journal of Hazardous Materials, 2008, 150, 158-165.	6.5	105
9	Effect of solids on homogeneous–heterogeneous flow regime transition in bubble columns. Chemical Engineering Science, 2005, 60, 6013-6026.	1.9	100
10	The different phases in the precipitation of dicalcium phosphate dihydrate. Journal of Crystal Growth, 2003, 252, 599-611.	0.7	95
11	A Generic Crystallization-like Model That Describes the Kinetics of Amyloid Fibril Formation. Journal of Biological Chemistry, 2012, 287, 30585-30594.	1.6	90
12	Microencapsulation of β-galactosidase with different biopolymers by a spray-drying process. Food Research International, 2014, 64, 134-140.	2.9	82
13	Quantification of the morphology of sucrose crystals by image analysis. Powder Technology, 2003, 133, 54-67.	2.1	75
14	Statistical tool combined with image analysis to characterize hydrodynamics and mass transfer in a bubble column. Chemical Engineering Journal, 2012, 180, 216-228.	6.6	68
15	Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 108-126.	2.3	66
16	Using water-soluble chitosan for flavour microencapsulation in food industry. Journal of Microencapsulation, 2013, 30, 571-579.	1.2	64
17	Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocolloids, 2020, 108, 106029.	5.6	63
18	Temperature and solid properties effects on gas–liquid mass transfer. Chemical Engineering Journal, 2010, 162, 743-752.	6.6	60

#	Article	IF	CITATIONS
19	Design and characterization of controlled-release vitamin A microparticles prepared by a spray-drying process. Powder Technology, 2017, 305, 411-417.	2.1	60
20	Using an Online Image Analysis Technique to Characterize Sucrose Crystal Morphology during a Crystallization Run. Industrial & Engineering Chemistry Research, 2011, 50, 6990-7002.	1.8	57
21	A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technology, 2020, 362, 428-435.	2.1	57
22	What Can the Kinetics of Amyloid Fibril Formation Tell about Off-pathway Aggregation?. Journal of Biological Chemistry, 2016, 291, 2018-2032.	1.6	56
23	Effect of some solid properties on gas–liquid mass transfer in a bubble column. Chemical Engineering and Processing: Process Intensification, 2011, 50, 181-188.	1.8	54
24	Continuous-flow precipitation of hydroxyapatite in ultrasonic microsystems. Chemical Engineering Journal, 2013, 215-216, 979-987.	6.6	52
25	Protein crystallization in a droplet-based microfluidic device: Hydrodynamic analysis and study of the phase behaviour. Chemical Engineering Science, 2018, 191, 232-244.	1.9	52
26	Study of microencapsulation and controlled release of modified chitosan microparticles containing vitamin B12. Powder Technology, 2017, 318, 162-169.	2.1	51
27	Design of microparticles containing natural antioxidants: Preparation, characterization and controlled release studies. Powder Technology, 2017, 313, 287-292.	2.1	51
28	Microencapsulation of Curcumin by a Spray-Drying Technique Using Gum Arabic as Encapsulating Agent and Release Studies. Food and Bioprocess Technology, 2018, 11, 1795-1806.	2.6	50
29	Microencapsulation of a Natural Antioxidant from Coffee—Chlorogenic Acid (3-Caffeoylquinic Acid). Food and Bioprocess Technology, 2017, 10, 1521-1530.	2.6	47
30	Spray Drying Encapsulation of Elderberry Extract and Evaluating the Release and Stability of Phenolic Compounds in Encapsulated Powders. Food and Bioprocess Technology, 2019, 12, 1381-1394.	2.6	45
31	Microencapsulation of polyphenols - The specific case of the microencapsulation of Sambucus Nigra L. extracts - A review. Trends in Food Science and Technology, 2020, 105, 454-467.	7.8	45
32	Measurement of gas phase characteristics using a monofibre optical probe in a three-phase flow. Chemical Engineering Science, 2008, 63, 4100-4115.	1.9	44
33	Fluorinated beta-sheet breaker peptides. Journal of Materials Chemistry B, 2014, 2, 2259-2264.	2.9	44
34	Application of a cyanobacterial extracellular polymeric substance in the microencapsulation of vitamin B12. Powder Technology, 2019, 343, 644-651.	2.1	42
35	Kinetic models applied to soluble vitamins delivery systems prepared by spray drying. Drying Technology, 2017, 35, 1249-1257.	1.7	41
36	Polysaccharide-based delivery systems for curcumin and turmeric powder encapsulation using a spray-drying process. Powder Technology, 2020, 370, 137-146.	2.1	40

#	Article	IF	CITATIONS
37	Potential use of ultrasound to promote protein crystallization. Journal of Applied Crystallography, 2010, 43, 1419-1425.	1.9	39
38	Process intensification and optimization for hydroxyapatite nanoparticles production. Chemical Engineering Science, 2013, 100, 352-359.	1.9	39
39	A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions. Carbohydrate Polymers, 2020, 230, 115657.	5.1	39
40	Using image analysis in the study of multiphase gas absorption. Chemical Engineering Science, 2005, 60, 5144-5150.	1.9	38
41	Characterization of intermediate stages in the precipitation of hydroxyapatite at 37°C. Chemical Engineering Science, 2012, 77, 150-156.	1.9	35
42	Calcium phosphate fouling on TiN-coated stainless steel surfaces: Role of ions and particles. Chemical Engineering Science, 2007, 62, 3821-3831.	1.9	34
43	Effect of the pH in the formation of β-galactosidase microparticles produced by a spray-drying process. International Journal of Biological Macromolecules, 2015, 78, 238-242.	3.6	34
44	pH influence on oxygen mass transfer coefficient in a bubble column. Individual characterization of kL and a. Chemical Engineering Science, 2013, 100, 145-152.	1.9	33
45	Neural Network Modeling and Simulation of the Solid/Liquid Activated Carbon Adsorption Process. Industrial & Engineering Chemistry Research, 2008, 47, 486-490.	1.8	32
46	The Influence of Microencapsulation with a Modified Chitosan (Water Soluble) on β-Galactosidase Activity. Drying Technology, 2014, 32, 1575-1586.	1.7	32
47	Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends in Food Science and Technology, 2021, 114, 510-520. O2 mass transfer in an oscillatory flow reactor provided with smooth periodic constrictions.	7.8	32
48	Individual characterization of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si22.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mi>k</mml:mi></mml:mrow><mml:mrow><mr and <mml:math <="" altimg="si36.gif" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>nl:mi>L<td>nmi:mi></td></td></mml:math></mr </mml:mrow></mml:msub></mml:mrow></mml:math>	nl:mi>L <td>nmi:mi></td>	nm i: mi>
49	overflow="scroll"> <mml:mrow><mml:mi>a</mml:mi></mml:mrow> . Chemical Engineering Potential food application of resveratrol microparticles: Characterization and controlled release studies. Powder Technology, 2019, 355, 593-601.	2.1	29
50	Hydroxyapatite/sericin composites: A simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process. Materials Science and Engineering C, 2020, 108, 110400.	3.8	28
51	Production of vitamin B1 microparticles by a spray drying process using different biopolymers as wall materials. Canadian Journal of Chemical Engineering, 2020, 98, 1682-1695.	0.9	28
52	Continuous-Flow Precipitation of Hydroxyapatite at 37 °C in a Meso Oscillatory Flow Reactor. Industrial & Engineering Chemistry Research, 2013, 52, 9816-9821.	1.8	27
53	Effect of operating conditions on batch and continuous paracetamol crystallization in an oscillatory flow mesoreactor. CrystEngComm, 2016, 18, 9113-9121.	1.3	27
54	Recent Advances in Silk Sericin/Calcium Phosphate Biomaterials. Frontiers in Materials, 2020, 7, .	1.2	27

#	Article	IF	CITATIONS
55	The progress and application of vitamin E encapsulation – A review. Food Hydrocolloids, 2021, 121, 106998.	5.6	27
56	The Influence of Impurities on the Crystal Growth Kinetics According to a Competitive Adsorption Model. Crystal Growth and Design, 2006, 6, 2814-2821.	1.4	26
57	Kinetics and thermodynamics of sucrose crystallization from pure solution at different initial supersaturations. Surface Science, 2010, 604, 1208-1214.	0.8	24
58	Protein Crystallization As a Process Step in a Novel Meso Oscillatory Flow Reactor: Study of Lysozyme Phase Behavior. Crystal Growth and Design, 2016, 16, 3748-3755.	1.4	24
59	Microencapsulation of Gulosibacter molinativorax ON4 T cells by a spray-drying process using different biopolymers. Journal of Hazardous Materials, 2017, 338, 85-92.	6.5	23
60	Influence of Mixing Intensity on Lysozyme Crystallization in a Meso Oscillatory Flow Reactor. Crystal Growth and Design, 2018, 18, 5940-5946.	1.4	23
61	Characterization of biopolymer-based systems obtained by spray-drying for retinoic acid controlled delivery. Powder Technology, 2019, 345, 758-765.	2.1	23
62	STUDY OF THE INHIBITION EFFECT ON THE MICROENCAPSULATED ENZYME b-GALACTOSIDASE. Environmental Engineering and Management Journal, 2012, 11, 1923-1930.	0.2	23
63	Dynamical model of brushite precipitation. Journal of Crystal Growth, 2007, 305, 201-210.	0.7	21
64	Dicalcium Phosphate Dihydrate Precipitation. Chemical Engineering Research and Design, 2007, 85, 1655-1661.	2.7	21
65	In vitro evaluation of microparticles with Laurus nobilis L. extract prepared by spray-drying for application in food and pharmaceutical products. Food and Bioproducts Processing, 2020, 122, 124-135.	1.8	21
66	Using Image Analysis to Look into the Effect of Impurity Concentration in NaCl Crystallization. Chemical Engineering Research and Design, 2005, 83, 331-338.	2.7	20
67	Protein-Based Hydroxyapatite Materials: Tuning Composition toward Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 3441-3455.	2.3	20
68	Edible Films Prepared with Different Biopolymers, Containing Polyphenols Extracted from Elderberry (Sambucus Nigra L.), to Protect Food Products and to Improve Food Functionality. Food and Bioprocess Technology, 2020, 13, 1742-1754.	2.6	19
69	A new approach to the production of zein microstructures with vitamin B12, by electrospinning and spray drying techniques. Powder Technology, 2021, 392, 47-57.	2.1	18
70	Modelling of the Batch Sucrose Crystallization Kinetics Using Artificial Neural Networks: Comparison with Conventional Regression Analysis. Industrial & Engineering Chemistry Research, 2008, 47, 4917-4923.	1.8	17
71	Application of Selective Crystallization Methods To Isolate the Metastable Polymorphs of Paracetamol: A Review. Organic Process Research and Development, 2019, 23, 2592-2607.	1.3	17
72	Preliminary evaluation and studies on the preparation, characterization and in vitro release studies of different biopolymer microparticles for controlled release of folic acid. Powder Technology, 2020, 369, 279-288.	2.1	17

#	Article	IF	CITATIONS
73	The intensification of gas–liquid flows with a periodic, constricted oscillatory-meso tube. Chemical Engineering Science, 2007, 62, 7454-7462.	1.9	16
74	Determination of the critical mixing intensity for secondary nucleation of paracetamol in an oscillatory flow crystallizer. CrystEngComm, 2018, 20, 829-836.	1.3	16
75	Formulation approaches for improved retinoids delivery in the treatment of several pathologies. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 143, 80-90.	2.0	16
76	Improving CO2 mass transfer in microalgal cultures using an oscillatory flow reactor with smooth periodic constrictions. Journal of Environmental Chemical Engineering, 2021, 9, 106505.	3.3	16
77	Characterization of crystal growth using a spiral nucleation model. Surface Science, 2007, 601, 3400-3408.	0.8	15
78	On the effect of a non-ionic surfactant on the surface of sucrose crystals and on the crystal growth process by inverse gas chromatography. Journal of Chromatography A, 2009, 1216, 8528-8534.	1.8	15
79	Development of Controlled Delivery Functional Systems by Microencapsulation of Different Extracts of Plants: Hypericum perforatum L., Salvia officinalis L. and Syzygium aromaticum. Food and Bioprocess Technology, 2021, 14, 1503-1517.	2.6	15
80	Spray-drying of oil-in-water emulsions for encapsulation of retinoic acid: Polysaccharide- and protein-based microparticles characterization and controlled release studies. Food Hydrocolloids, 2022, 124, 107193.	5.6	15
81	Modeling Sucrose Evaporative Crystallization. Part 1. Vacuum Pan Monitoring by Mass Balance and Image Analysis Methods. Industrial & Engineering Chemistry Research, 2005, 44, 8858-8864.	1.8	14
82	Unsteady-state transfer of impurities during crystal growth of sucrose in sugarcane solutions. Journal of Crystal Growth, 2009, 311, 3841-3848.	0.7	14
83	Unsteady-state inhibition of crystal growth caused by solution impurities. CrystEngComm, 2011, 13, 1103-1110.	1.3	14
84	Statistical methodology for scale-up of an anti-solvent crystallization process in the pharmaceutical industry. Separation and Purification Technology, 2019, 213, 56-62.	3.9	14
85	Ultrasonic protein crystallization: Promoting nucleation in microdroplets through pulsed sonication. Chemical Engineering Research and Design, 2020, 162, 249-257.	2.7	14
86	Understanding Water Equilibration Fundamentals as a Step for Rational Protein Crystallization. PLoS ONE, 2008, 3, e1998.	1.1	13
87	Precipitation of hydroxyapatite at 37 °C in a meso oscillatory flow reactor operated in batch at constant power density. AICHE Journal, 2013, 59, 4483-4493.	1.8	13
88	Enzyme kinetics: the whole picture reveals hidden meanings. FEBS Journal, 2015, 282, 2309-2316.	2.2	13
89	Insoluble Off-Pathway Aggregates as Crowding Agents during Amyloid Fibril Formation. Journal of Physical Chemistry B, 2017, 121, 2288-2298.	1.2	13
90	Chemical Kinetic Strategies for Highâ€Throughput Screening of Protein Aggregation Modulators. Chemistry - an Asian Journal, 2019, 14, 500-508.	1.7	13

#	Article	IF	CITATIONS
91	The role of diffusional resistance on crystal growth: Interpretation of dissolution and growth rate data. Chemical Engineering Science, 2006, 61, 5686-5695.	1.9	12
92	Modelling agglomeration degree in sucrose crystallisation. Chemical Engineering and Processing: Process Intensification, 2008, 47, 1666-1677.	1.8	12
93	Uncertainty in the determination of glucose in aqueous solutions by highâ€performance liquid chromatography with evaporative light scattering detection. Journal of Separation Science, 2009, 32, 3116-3125.	1.3	12
94	Kinetics and thermodynamics of sucrose crystal growth in the presence of a non-ionic surfactant. Surface Science, 2010, 604, 981-987.	0.8	12
95	Small temperature oscillations promote protein crystallization. CrystEngComm, 2011, 13, 3051.	1.3	12
96	The axial dispersion of liquid solutions and solid suspensions in planar oscillatory flow crystallizers. AICHE Journal, 2019, 65, e16683.	1.8	12
97	A new theoretical approach to model crystal growth from solution. Chemical Engineering Science, 2006, 61, 5696-5703.	1.9	11
98	Effect of solids on O 2 mass transfer in an oscillatory flow reactor provided with smooth periodic constrictions. Chemical Engineering Science, 2017, 170, 400-409.	1.9	11
99	Silkâ€based microcarriers: current developments and future perspectives. IET Nanobiotechnology, 2020, 14, 645-653.	1.9	11
100	Recent Advances in Water-Soluble Vitamins Delivery Systems Prepared by Mechanical Processes (Electrospinning and Spray-Drying Techniques) for Food and Nutraceuticals Applications—A Review. Foods, 2022, 11, 1271.	1.9	11
101	Modeling Sucrose Evaporative Crystallization. Part 2. Investigation into Crystal Growth Kinetics and Solubility. Industrial & Engineering Chemistry Research, 2005, 44, 8865-8872.	1.8	10
102	Rationalizing Protein Crystallization Screenings through Water Equilibration Theory and Protein Solubility Data. Crystal Growth and Design, 2008, 8, 4233-4243.	1.4	10
103	Artificial neural networks for modeling in reaction process systems. Neural Computing and Applications, 2009, 18, 15-24.	3.2	10
104	Improvement of vitamin E microencapsulation and release using different biopolymers as encapsulating agents. Food and Bioproducts Processing, 2021, 130, 23-33.	1.8	10
105	Optimization of electrospinning parameters for the production of zein microstructures for food and biomedical applications. Micron, 2022, 152, 103164.	1.1	10
106	An update on hydroxyapatite/collagen composites: What is there left to say about these bioinspired materials?. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1192-1205.	1.6	10
107	Mass transfer during bubbling in single and multi-orifice absorbers. Chemical Engineering Science, 1986, 41, 1987-1994.	1.9	9
108	Roughness effect on the overall growth rate of sucrose crystals. Journal of Crystal Growth, 2008, 310, 442-451.	0.7	9

#	Article	IF	CITATIONS
109	The effect of crystal surface roughness on impurity adsorption. Crystal Research and Technology, 2009, 44, 521-533.	0.6	9
110	On growth rate hysteresis and catastrophic crystal growth. Journal of Crystal Growth, 2013, 368, 47-55.	0.7	9
111	Continuous-flow precipitation as a route to prepare highly controlled nanohydroxyapatite: <i>in vitro</i> mineralization and biological evaluation. Materials Research Express, 2016, 3, 075404.	0.8	9
112	Production of microparticles of molinate degrading biocatalysts using the spray drying technique. Chemosphere, 2016, 161, 61-68.	4.2	9
113	High efficient strategy for the production of hydroxyapatite/silk sericin nanocomposites. Journal of Chemical Technology and Biotechnology, 2021, 96, 241-248.	1.6	9
114	Mixing Performance of Planar Oscillatory Flow Reactors with Liquid Solutions and Solid Suspensions. Industrial & Signa Chemistry Research, 2021, 60, 2663-2676.	1.8	9
115	STUDY OF DIFFERENT ENCAPSULATING AGENTS FOR THE MICROENCAPSULATION OF VITAMIN B12. Environmental Engineering and Management Journal, 2018, 17, 855-864.	0.2	9
116	New developments on size-dependent growth applied to the crystallization of sucrose. Surface Science, 2007, 601, 5466-5472.	0.8	8
117	Interference of chitosan in glucose analysis by high-performance liquid chromatography with evaporative light scattering detection. Analytical and Bioanalytical Chemistry, 2008, 391, 1183-1188.	1.9	8
118	Sucrose crystal growth in the presence of dextran of different molecular weights. Journal of Crystal Growth, 2012, 355, 17-25.	0.7	8
119	The nucleation of protein crystals as a race against time with on- and off-pathways. Journal of Applied Crystallography, 2017, 50, 1056-1065.	1.9	8
120	Controlled protein crystal nucleation in microreactors: the effect of the droplet volume <i>versus</i> high supersaturation ratios. CrystEngComm, 2020, 22, 4692-4701.	1.3	8
121	Innovation and improvement in food fortification: Microencapsulation of vitamin B2 and B3 by a spray-drying method and evaluation of the simulated release profiles. Journal of Dispersion Science and Technology, 2022, 43, 2179-2191.	1.3	8
122	Comments on "Equilibrium and kinetic studies for the biosorption system of copper(II) ion from aqueous solution using Tectona grandis L.f. leaves powder― Journal of Hazardous Materials, 2007, 146, 428-429.	6.5	7
123	Running away from Thermodynamics To Promote or Inhibit Crystal Growth. Crystal Growth and Design, 2012, 12, 40-43.	1.4	7
124	Protein crystals as a key for deciphering macromolecular crowding effects on biological reactions. Physical Chemistry Chemical Physics, 2020, 22, 16143-16149.	1.3	7
125	Tailoring the crystal size distribution of an active pharmaceutical ingredient by continuous antisolvent crystallization in a planar oscillatory flow crystallizer. Chemical Engineering Research and Design, 2021, 175, 115-123.	2.7	7
126	Microencapsulation of Citronella Oil with Carboxymethylated Tamarind Gum. Walailak Journal of Science and Technology, 2018, 15, 515-527.	0.5	7

#	Article	IF	CITATIONS
127	Microencapsulation of retinoic acid by atomization into biopolymeric matrices: Binary and ternary blends of alginic acid sodium, xanthan gum and modified chitosan. Food Hydrocolloids, 2022, 124, 107310.	5.6	7
128	Preliminary studies of microencapsulation and anticancer activity of polyphenols extract from <scp><i>Punica granatum</i></scp> peels. Canadian Journal of Chemical Engineering, 2022, 100, 3240-3252.	0.9	7
129	Comments on "Removal of lead from aqueous solution using Syzygium cumini L.: Equilibrium and kinetic studies― Journal of Hazardous Materials, 2007, 147, 677-678.	6.5	6
130	Application of Biopolymers in Microencapsulation Processes. , 2018, , 191-222.		6
131	A simple linearization method unveils hidden enzymatic assay interferences. Biophysical Chemistry, 2019, 252, 106193.	1.5	6
132	The Finding of Nondissolving Lysozyme Crystals and Its Significance for the Study of Hard-to-Crystallize Biological Macromolecules. Crystal Growth and Design, 2016, 16, 4285-4291.	1.4	5
133	DEVELOPMENT AND VALIDATION OF UV SPECTROPHOTOMETRIC METHOD FOR DETERMINING THE HERBICIDE MOLINATE WITH AND WITHOUT ALGINATE MICROPARTICLES. Environmental Engineering and Management Journal, 2015, 14, 303-309.	0.2	5
134	Uncertainty in the Determination of Glucose and Sucrose in Solutions with Chitosan by Enzymatic Methods. Journal of the Brazilian Chemical Society, 2013, , .	0.6	5
135	Food-Grade Microencapsulation Systems to Improve Protection of the Epigallocatechin Gallate. Foods, 2022, 11, 1990.	1.9	5
136	Kinetic studies on the influence of temperature and growth rate history on crystal growth. Crystal Research and Technology, 2008, 43, 1258-1267.	0.6	4
137	Metastable zone width for secondary nucleation and secondary nucleation inside the metastable zone. Crystal Research and Technology, 2011, 46, 373-382.	0.6	4
138	Crystal habit modification and polymorphic stability assessment of a long-acting β ₂ -adrenergic agonist. CrystEngComm, 2019, 21, 3460-3470.	1.3	4
139	interferENZY: A Web-Based Tool for Enzymatic Assay Validation and Standardized Kinetic Analysis. Journal of Molecular Biology, 2021, 433, 166613.	2.0	4
140	Characterization of Industrial Bioreactors (Mixing, Heat, and Mass Transfer). , 2017, , 563-592.		3
141	Towards an enhanced control of protein crystallization: Seeded batch lysozyme crystallization in a meso oscillatory flow reactor. Chemical Engineering Research and Design, 2022, 178, 575-582.	2.7	3
142	Insulin crystallization: The route from hanging-drop vapour diffusion to controlled crystallization in droplet microfluidics. Journal of Crystal Growth, 2022, 582, 126516.	0.7	3
143	Fabrication of calcium phosphates with controlled properties using a modular oscillatory flow reactor. Chemical Engineering Research and Design, 2022, 183, 90-103.	2.7	3
144	Process modeling strategy combining analytical and data based techniques - I. NN identification of reaction rates with known kinetics coefficients. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	2

#	Article	IF	CITATIONS
145	Major Improvements in Robustness and Efficiency during the Screening of Novel Enzyme Effectors by the 3-Point Kinetics Assay. SLAS Discovery, 2021, 26, 373-382.	1.4	2
146	Crystallization of paracetamol from aqueous solutions in a planar oscillatory flow crystallizer: effect of the oscillation conditions on the nucleation kinetics. CrystEngComm, 2021, 23, 6930-6941.	1.3	2
147	ENHANCEMENT OF OXYGEN MASS TRANSFER IN PNEUMATICAL BIOREACTORS USING N-DODECANE AS OXYGEN-VECTOR. Environmental Engineering and Management Journal, 2012, 11, 1953-1961.	0.2	2
148	Continuous Production of Highly Tuned Silk/Calcium-Based Composites: Exploring New Pathways for Skin Regeneration. Molecules, 2022, 27, 2249.	1.7	2
149	A simple but sound approach for processing crystal growth kinetic data. Chemical Engineering Research and Design, 2011, 89, 2049-2053.	2.7	1
150	Nonmechanically Agitated Bioreactors. , 2017, , 217-233.		1
151	Quality by Statistical Control in Crystallization—Assessment of Mixing Conditions and Probability of Obtaining the Desired Particle Size. Industrial & Engineering Chemistry Research, 2019, 58, 20162-20172.	1.8	1
152	Crystallization of paracetamol from mixtures of ethanol and water in a planar oscillatory flow crystallizer: effect of the oscillation conditions on the crystal growth kinetics. CrystEngComm, 2021, 23, 8301-8314.	1.3	1